Learn R Programming

qdapRegex (version 0.7.8)

rm_dollar: Remove/Replace/Extract Dollars

Description

Remove/replace/extract dollars amounts from a string.

Usage

rm_dollar(
  text.var,
  trim = !extract,
  clean = TRUE,
  pattern = "@rm_dollar",
  replacement = "",
  extract = FALSE,
  dictionary = getOption("regex.library"),
  ...
)

ex_dollar( text.var, trim = !extract, clean = TRUE, pattern = "@rm_dollar", replacement = "", extract = TRUE, dictionary = getOption("regex.library"), ... )

Value

Returns a character string with dollars removed.

Arguments

text.var

The text variable.

trim

logical. If TRUE removes leading and trailing white spaces.

clean

trim logical. If TRUE extra white spaces and escaped character will be removed.

pattern

A character string containing a regular expression (or character string for fixed = TRUE) to be matched in the given character vector. Default, @rm_dollar uses the rm_dollar regex from the regular expression dictionary from the dictionary argument.

replacement

Replacement for matched pattern.

extract

logical. If TRUE the dollar strings are extracted into a list of vectors.

dictionary

A dictionary of canned regular expressions to search within if pattern begins with "@rm_".

...

Other arguments passed to gsub.

See Also

gsub, stri_extract_all_regex

Other rm_ functions: rm_abbreviation(), rm_between(), rm_bracket(), rm_caps_phrase(), rm_caps(), rm_citation_tex(), rm_citation(), rm_city_state_zip(), rm_city_state(), rm_date(), rm_default(), rm_email(), rm_emoticon(), rm_endmark(), rm_hash(), rm_nchar_words(), rm_non_ascii(), rm_non_words(), rm_number(), rm_percent(), rm_phone(), rm_postal_code(), rm_repeated_characters(), rm_repeated_phrases(), rm_repeated_words(), rm_tag(), rm_time(), rm_title_name(), rm_url(), rm_white(), rm_zip()

Examples

Run this code
x <-  c("There is $5.50 for me.", "that's 45.6% of the pizza", 
    "14% is $26 or $25.99", "Really?...$123,234.99 is not cheap.")

rm_dollar(x)
ex_dollar(x)

Run the code above in your browser using DataLab