Remove/replace/extract postal codes.
rm_postal_code(
  text.var,
  trim = !extract,
  clean = TRUE,
  pattern = "@rm_postal_code",
  replacement = "",
  extract = FALSE,
  dictionary = getOption("regex.library"),
  ...
)ex_postal_code(
  text.var,
  trim = !extract,
  clean = TRUE,
  pattern = "@rm_postal_code",
  replacement = "",
  extract = TRUE,
  dictionary = getOption("regex.library"),
  ...
)
Returns a character string with postal codes removed.
The text variable.
logical.  If TRUE removes leading and trailing white 
spaces.
trim logical.  If TRUE extra white spaces and escaped 
character will be removed.
A character string containing a regular expression (or 
character string for fixed = TRUE) to be matched in the given 
character vector.  Default, @rm_postal_code uses the 
rm_postal_code regex from the regular expression dictionary from 
the dictionary argument.
Replacement for matched pattern.
logical.  If TRUE the city & state are extracted into a 
list of vectors.
A dictionary of canned regular expressions to search within 
if pattern begins with "@rm_".
Other arguments passed to gsub.
Other rm_ functions: 
rm_abbreviation(),
rm_between(),
rm_bracket(),
rm_caps_phrase(),
rm_caps(),
rm_citation_tex(),
rm_citation(),
rm_city_state_zip(),
rm_city_state(),
rm_date(),
rm_default(),
rm_dollar(),
rm_email(),
rm_emoticon(),
rm_endmark(),
rm_hash(),
rm_nchar_words(),
rm_non_ascii(),
rm_non_words(),
rm_number(),
rm_percent(),
rm_phone(),
rm_repeated_characters(),
rm_repeated_phrases(),
rm_repeated_words(),
rm_tag(),
rm_time(),
rm_title_name(),
rm_url(),
rm_white(),
rm_zip()
x <- c("Anchorage, AK", "New York City, NY", "Some Place, Another Place, LA")
rm_postal_code(x)
ex_postal_code(x)
Run the code above in your browser using DataLab