Remove/replace/extract postal codes.
rm_postal_code(
text.var,
trim = !extract,
clean = TRUE,
pattern = "@rm_postal_code",
replacement = "",
extract = FALSE,
dictionary = getOption("regex.library"),
...
)ex_postal_code(
text.var,
trim = !extract,
clean = TRUE,
pattern = "@rm_postal_code",
replacement = "",
extract = TRUE,
dictionary = getOption("regex.library"),
...
)
Returns a character string with postal codes removed.
The text variable.
logical. If TRUE
removes leading and trailing white
spaces.
trim logical. If TRUE
extra white spaces and escaped
character will be removed.
A character string containing a regular expression (or
character string for fixed = TRUE
) to be matched in the given
character vector. Default, @rm_postal_code
uses the
rm_postal_code
regex from the regular expression dictionary from
the dictionary
argument.
Replacement for matched pattern
.
logical. If TRUE
the city & state are extracted into a
list of vectors.
A dictionary of canned regular expressions to search within
if pattern
begins with "@rm_"
.
Other arguments passed to gsub
.
Other rm_ functions:
rm_abbreviation()
,
rm_between()
,
rm_bracket()
,
rm_caps_phrase()
,
rm_caps()
,
rm_citation_tex()
,
rm_citation()
,
rm_city_state_zip()
,
rm_city_state()
,
rm_date()
,
rm_default()
,
rm_dollar()
,
rm_email()
,
rm_emoticon()
,
rm_endmark()
,
rm_hash()
,
rm_nchar_words()
,
rm_non_ascii()
,
rm_non_words()
,
rm_number()
,
rm_percent()
,
rm_phone()
,
rm_repeated_characters()
,
rm_repeated_phrases()
,
rm_repeated_words()
,
rm_tag()
,
rm_time()
,
rm_title_name()
,
rm_url()
,
rm_white()
,
rm_zip()
x <- c("Anchorage, AK", "New York City, NY", "Some Place, Another Place, LA")
rm_postal_code(x)
ex_postal_code(x)
Run the code above in your browser using DataLab