This function computes spline quantile regression (SQR) solution from response vector and design matrix.
It uses the FORTRAN code rqfnb.f
in the "quantreg" package with the kind permission of Dr. R. Koenker.
sqr.fit(
X,
y,
tau,
spar = 1,
d = 1,
weighted = FALSE,
mthreads = TRUE,
ztol = 1e-05
)
A list with the following elements:
matrix of regression coefficients
sequence critera for smoothing parameter select: (AIC,BIC,SIC)
sequence of number of effective parameters
sequence of fidelity measure as quasi-likelihood
number of iterations
design matrix (nrow(X) = length(y)
)
response vector
sequence of quantile levels in (0,1)
smoothing parameter
subsampling rate of quantile levels (default = 1)
if TRUE
, penalty function is weighted (default = FALSE
)
if FALSE
, set RhpcBLASctl::blas_set_num_threads(1)
(default = TRUE
)
zero tolerance parameter used to determine the effective dimensionality of the fit