Chen, W. M., & Abecasis, G. R. (2007). Family-based association tests for genomewide association scans. The American Journal of Human Genetics, 81(5), 913-926.
Loh, P. R., Tucker, G., Bulik-Sullivan, B. K., Vilhjalmsson, B. J., Finucane, H. K., Salem, R. M., ... & Patterson, N. (2015). Efficient Bayesian mixed-model analysis increases association power in large cohorts. Nature genetics, 47(3), 284-290.
Kang, H. M., Sul, J. H., Zaitlen, N. A., Kong, S. Y., Freimer, N. B., Sabatti, C., & Eskin, E. (2010). Variance component model to account for sample structure in genome-wide association studies. Nature genetics, 42(4), 348-354.
Lippert, C., Listgarten, J., Liu, Y., Kadie, C. M., Davidson, R. I., & Heckerman, D. (2011). FaST linear mixed models for genome-wide association studies. Nature methods, 8(10), 833-835.
Listgarten, J., Lippert, C., Kadie, C. M., Davidson, R. I., Eskin, E., & Heckerman, D. (2012). Improved linear mixed models for genome-wide association studies. Nature methods, 9(6), 525-526.
Listgarten, J., Lippert, C., & Heckerman, D. (2013). FaST-LMM-Select for addressing confounding from spatial structure and rare variants. Nature Genetics, 45(5), 470-471.
Lippert, C., Quon, G., Kang, E. Y., Kadie, C. M., Listgarten, J., & Heckerman, D. (2013). The benefits of selecting phenotype-specific variants for applications of mixed models in genomics. Scientific reports, 3.
Zhou, X., & Stephens, M. (2012). Genome-wide efficient mixed-model analysis for association studies. Nature genetics, 44(7), 821-824.
Svishcheva, G. R., Axenovich, T. I., Belonogova, N. M., van Duijn, C. M., & Aulchenko, Y. S. (2012). Rapid variance components-based method for whole-genome association analysis. Nature genetics, 44(10), 1166-1170.
Yang, J., Zaitlen, N. A., Goddard, M. E., Visscher, P. M., & Price, A. L. (2014). Advantages and pitfalls in the application of mixed-model association methods. Nature genetics, 46(2), 100-106.
Bulik-Sullivan, B. K., Loh, P. R., Finucane, H. K., Ripke, S., Yang, J., Patterson, N., ... & Schizophrenia Working Group of the Psychiatric Genomics Consortium. (2015). LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nature genetics, 47(3), 291-295.