
fitQmapDIST
fits a theoretical distribution to observed and to
modelled time series and returns these parameters as well as a
transfer function derived from the distribution. doQmapDIST
uses the transfer function to transform the distribution of the
modelled data to match the distribution of the observations.
fitQmapDIST(obs, mod, ...)
# S3 method for default
fitQmapDIST(obs,mod,distr="berngamma",start.fun,
qstep=NULL,mlepar,...)
# S3 method for matrix
fitQmapDIST(obs, mod, ...)
# S3 method for data.frame
fitQmapDIST(obs, mod, ...)
doQmapDIST(x,fobj,...)
# S3 method for default
doQmapDIST(x,fobj,...)
# S3 method for matrix
doQmapDIST(x,fobj,...)
# S3 method for data.frame
doQmapDIST(x,fobj,...)
fitQmapDIST
returns an object of class fitQmapDIST
containing following elements:
The function used to transform the distribution of
modelled values such that the distribution of observations. The
function is build internally based on the distribution function
("pname") and quantile function ("qname") corresponding to
distr
.
A matrix. The (named) columns correspond to the parameters
of the distribution specified in distr
estimated for the
observed (suffix .o
) and the modelled (suffix .m
)
data. The rows correspond to each pair of time series in obs
and mod
.
doQmapDIST
returns a numeric
vector, matrix
or
data.frame
depending on the format of x
.
numeric
vector, column matrix
or data.frame
with
observed time series.
numeric
vector, column matrix
or data.frame
with
modelled time series, corresponding to obs
.
A character string "name"
naming a distribution for which the
corresponding density function (dname
), the corresponding
distribution function (pname
) and the quantile function
(qname
) must be defined (see for example
GammaDist
, berngamma
or
bernweibull
.
function estimating starting values for parameter
optimisation. Default starting values are provided for
berngamma
, bernweibull
,
bernlnorm
, bernexp
and the
distributions mentioned in the documentation of
mledist
.
NULL
or a numeric value between 0 and 1.
If !is.null(qstep)
than mod
and obs
are
aggregated to quantiles before model identification as:
quantile(x,probs=seq(0,1,by=qstep)
. This effectively reduces
the sample-size and can be used to speedup computations - but may
render estimates less reliable.
a named list. Names correspond to parameters passed to
mledist
note that start
may be overwritten by
start.fun
See examples.
numeric
vector or a column matrix
of modelled time
series
output from fitQmapDIST
Further arguments passed to methods
Lukas Gudmundsson
Quantile mapping using distribution derived transformations to adjust
the distribution of a modelled variable (
Piani, C.; Haerter, J. & Coppola, E. Statistical bias correction for daily precipitation in regional climate models over Europe. Theoretical and Applied Climatology, 2010, 99, 187-192, <doi:10.1007/s00704-009-0134-9>.
Li, H.; Sheffield, J. & Wood, E. F. Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching. J. Geophys. Res., 2010, 115, D10101, <doi:10.1029/2009JD012882>.
Ines, A. V. & Hansen, J. W. Bias correction of daily GCM rainfall for crop simulation studies. Agricultural and Forest Meteorology, 2006, 138, 44 - 53, <doi:10.1016/j.agrformet.2006.03.009>.
For a general assessment of the methods see:
Gudmundsson, L.; Bremnes, J. B.; Haugen, J. E. & Engen-Skaugen, T. Technical Note: Downscaling RCM precipitation to the station scale using statistical transformations - a comparison of methods. Hydrology and Earth System Sciences, 2012, 16, 3383-3390, <doi:10.5194/hess-16-3383-2012>.
doQmap
, startberngamma
,
berngamma
, startbernweibull
,
bernweibull
, startbernlnorm
,
bernlnorm
, startbernexp
,
bernexp
, mledist
,
fitdist
data(obsprecip)
data(modprecip)
qm.fit <- fitQmapDIST(obsprecip[,1],modprecip[,1],
distr="berngamma",
qstep=0.001)
qm <- doQmapDIST(modprecip[,1],qm.fit)
# adjusting settings of the maximum likelyhood estimator
# here changing the convergence criterion in the optimizer 'optim'
# Note: the selected value might be to large for true applications.
# Please check for your context.
qm.lnorm.fit <- fitQmapDIST(obsprecip[,1],modprecip[,1],
distr="bernlnorm",
qstep=0.001,
mlepar = list(control = list(
reltol = 1e-2
)))
qm.lnorm <- doQmapDIST(modprecip[,1],qm.lnorm.fit)
qm.weibu.fit <- fitQmapDIST(obsprecip[,1],modprecip[,1],
distr="bernweibull",
qstep=0.001)
qm.weibu <- doQmapDIST(modprecip[,1],qm.weibu.fit)
qm.exp.fit <- fitQmapDIST(sqrt(obsprecip[,1]),sqrt(modprecip[,1]),
distr="bernexp",
qstep=0.001)
qm.exp <- doQmapDIST(sqrt(modprecip[,1]),qm.exp.fit)^2
## utility function.
## plots are easier to investigate if
## precipitation data are sqrt transformed
sqrtquant <- function(x,qstep=0.01){
qq <- quantile(x,prob=seq(0,1,by=qstep))
sqrt(qq)
}
plot(sqrtquant(modprecip[,1]),
sqrtquant(obsprecip[,1]))
lines(sqrtquant(modprecip[,1]),
sqrtquant(qm),col="red")
lines(sqrtquant(modprecip[,1]),
sqrtquant(qm.lnorm),col="blue")
lines(sqrtquant(modprecip[,1]),
sqrtquant(qm.weibu),col="green")
lines(sqrtquant(modprecip[,1]),
sqrtquant(qm.exp),col="orange")
legend("topleft",
legend=c("berngamma","bernlnorm","bernweibull","bernexp"),
lty=1,
col=c("red","blue","green","orange"))
## effect of qstep on speed of fitting process:
system.time(
qm.a.fit <- fitQmapDIST(obsprecip[,2],modprecip[,2],
distr="berngamma",
start.fun=startberngamma,
qstep=0.001)
)
system.time(
qm.b.fit <- fitQmapDIST(obsprecip[,2],modprecip[,2],
distr="berngamma",
start.fun=startberngamma,
qstep=0.01)
)
qm.a <- doQmapDIST(modprecip[,2],qm.a.fit)
qm.b <- doQmapDIST(modprecip[,2],qm.b.fit)
plot(sqrtquant(modprecip[,2]),
sqrtquant(obsprecip[,2]))
lines(sqrtquant(modprecip[,2]),
sqrtquant(qm.a),col="red")
lines(sqrtquant(modprecip[,2]),
sqrtquant(qm.b),col="blue")
legend("topleft",
legend=c("qstep=0.001","qstep=0.01"),
col=c("red","blue"),
lty=1)
## method for matrix
## the sqrt() transformation renders the
## fitting procedure more stable
qm2.fit <- fitQmapDIST(sqrt(obsprecip),sqrt(modprecip),
distr="berngamma",
qstep=0.001)
qm2 <- doQmapDIST(sqrt(modprecip),qm2.fit)^2
if(!any(is.na(qm2.fit$par))){
op <- par(mfrow=c(1,3))
for(i in 1:3){
plot(sqrtquant(modprecip[,i]),
sqrtquant(obsprecip[,i]))
lines(sqrtquant(modprecip[,i]),
sqrtquant(qm2[,i]),col="red")
}
par(op)
}
Run the code above in your browser using DataLab