## calculate efficiencies and ct values
## for each run in the 'reps' data,
## subtract baseline using the
## first 8 cycles.
ml1 <- modlist(reps, model = l5, baseline = 1:8)
getPar(ml1, type = "curve")
## 'crossing points' for the first 3 runs (normalized)
## and using best model from Akaike weights
ml2 <- modlist(reps, 1, 2:5, model = l5, norm = TRUE,
opt = TRUE, optPAR = list(crit = "weights"))
sapply(ml2, function(x) efficiency(x, plot = FALSE)$cpD2)
## convert a single run to a 'modlist'
m <- pcrfit(reps, 1, 2, l5)
ml3 <- modlist(m)
## using the 'testdat' set
## include failed fits
ml4 <- modlist(testdat, 1, 2:9, model = l5)
plot(ml4, which = "single")
## remove failed fits and update a label vector
GROUP <- c("g1s1", "g1s2", "g1s3", "g1s4", "g1c1", "g1c2", "g1c3", "g1c4")
ml5 <- modlist(testdat, 1, 2:9, model = l5, labels = GROUP, remove = "KOD")
plot(ml5, which = "single")
GROUP_mod
## use one of the mechanistic models
## get D0 values
ml6 <- modlist(reps, model = mak3)
sapply(ml6, function(x) coef(x)[1])
## exclude first sample in each
## replicate group of dataset 'reps'
ml7 <- modlist(reps, exclude = ".1")
plot(ml7, which = "single")
## using weighted fitting:
## weighted by inverse residuals
ml8 <- modlist(reps, weights = "1/abs(resid)")
plot(ml8, which = "single")
Run the code above in your browser using DataLab