# NOT RUN {
## Only treatment sample and control,
## no reference gene, 4 replicates each.
## Individual efficiencies for error calculation.
DAT1 <- pcrbatch(reps, fluo = 2:9, model = l4)
GROUP1 <- c("gs", "gs", "gs", "gs", "gc", "gc", "gc", "gc")
RES1 <- ratiocalc(DAT1, group = GROUP1, which.eff = "sli",
type.eff = "individual", which.cp = "cpD2")
RES1$summary
# }
# NOT RUN {
## Gets even better using averaged efficiencies
## over all replicates.
## p-value indicates significant upregulation in
## comparison to randomly reallocated
## samples (similar to REST software)
RES2 <- ratiocalc(DAT1, GROUP1, which.eff = "sli",
type.eff = "mean.single", which.cp = "cpD2")
RES2$summary
## Using reference data.
## Toy example is same data as above
## but replicated as reference such
## that the ratio should be 1.
DAT3 <- pcrbatch(reps, fluo = c(2:9, 2:9), model = l4)
GROUP3 <- c("gs", "gs", "gs", "gs",
"gc", "gc", "gc", "gc",
"rs", "rs", "rs", "rs",
"rc", "rc", "rc", "rc")
RES3 <- ratiocalc(DAT3, GROUP3, which.eff = "sli",
type.eff = "mean.single", which.cp = "cpD2")
RES3$summary
## Using one of the mechanistic models
## => ratios are calculated from the replicate
## D0 values, without reference genes.
DAT4 <- pcrbatch(reps, fluo = 2:9,
methods = c("sigfit", "sliwin", "mak3"))
GROUP4 <- c("gs", "gs", "gs", "gs", "gc", "gc", "gc", "gc")
RES4 <- ratiocalc(DAT4, GROUP4, which.eff = "mak")
RES4$summary
## Example without replicates
## => no Monte-Carlo simulations
## and hence no plots.
DAT5 <- pcrbatch(reps, fluo = 2:5, model = l4)
GROUP5 <- c("gs", "gc", "rs", "rc")
RES5 <- ratiocalc(DAT5, GROUP5, which.eff = "sli",
type.eff = "individual", which.cp = "cpD2")
RES5$summary
## Using external efficiencies.
DAT6 <- pcrbatch(reps, fluo = 2:9, model = l5)
GROUP6 <- c("gs", "gs", "gs", "gs", "gc", "gc", "gc", "gc")
EFF6 <- rep(c(1.72, 1.76), c(4, 4))
RES6 <- ratiocalc(DAT6, GROUP6, which.eff = EFF6,
type.eff = "individual", which.cp = "cpD2")
RES6$summary
## Using external efficiencies AND
## external threshold cycles.
DAT7 <- pcrbatch(reps, fluo = 2:9, model = l5)
GROUP7 <- c("gs", "gs", "gs", "gs", "gc", "gc", "gc", "gc")
EFF7 <- rep(c(1.72, 1.76), c(4, 4))
CP7 <- c(15.44, 15.33, 14.84, 15.34, 18.89, 18.71, 18.13, 17.22)
RES7 <- ratiocalc(DAT7, GROUP7, which.eff = EFF7,
type.eff = "individual", which.cp = CP7)
RES7$summary
## Compare 'ratiocalc' to REST software
## using the data from the REST 2008
## manual (http://rest.gene-quantification.info/).
## We supply the threshold cycles/efficiencies from the
## manual as external data to 'dummy' pcrbatch data.
## BETTER: use 'ratioPar' function!
cp.rc <- c(26.74, 26.85, 26.83, 26.68, 27.39, 27.03, 26.78, 27.32)
cp.rs <- c(26.77, 26.47, 27.03, 26.92, 26.97, 26.97, 26.07, 26.3, 26.14, 26.81)
cp.gc <- c(27.57, 27.61, 27.82, 27.12, 27.76, 27.74, 26.91, 27.49)
cp.gs <- c(24.54, 24.95, 24.57, 24.63, 24.66, 24.89, 24.71, 24.9, 24.26, 24.44)
eff.rc <- rep(1.97, 8)
eff.rs <- rep(1.97, 10)
eff.gc <- rep(2.01, 8)
eff.gs <- rep(2.01, 10)
CP8 <- c(cp.rc, cp.rs, cp.gc, cp.gs)
EFF8 <- c(eff.rc, eff.rs, eff.gc, eff.gs)
DAT8 <- pcrbatch(rutledge, 1, 2:37, model = l4)
GROUP8 <- rep(c("rc", "rs", "gc", "gs"), c(8, 10, 8, 10))
RES8 <- ratiocalc(DAT8, GROUP8, which.eff = EFF8, which.cp = CP8)
RES8$summary
## => Confidence interval: 2.983/9.996
## REST 2008 manual, page 10: 2.983/9.996
# }
Run the code above in your browser using DataLab