# NOT RUN {
# generate random Normal data
set.seed(0)
smp <- data.frame(norm = rnorm(100))
# Normal Q-Q plot of Normal data
gg <- ggplot(data = smp, mapping = aes(sample = norm)) +
stat_qq_band() +
stat_qq_line() +
stat_qq_point()
gg + labs(x = "Theoretical Quantiles", y = "Sample Quantiles")
# Exponential Q-Q plot of mean ozone levels (airquality dataset)
di <- "exp"
dp <- list(rate = 1)
gg <- ggplot(data = airquality, mapping = aes(sample = Ozone)) +
stat_qq_band(distribution = di, dparams = dp) +
stat_qq_line(distribution = di, dparams = dp) +
stat_qq_point(distribution = di, dparams = dp) +
labs(x = "Theoretical Quantiles", y = "Sample Quantiles")
gg
# Detrended Exponential Q-Q plot of mean ozone levels
di <- "exp"
dp <- list(rate = 1)
de <- TRUE
gg <- ggplot(data = airquality, mapping = aes(sample = Ozone)) +
stat_qq_band(distribution = di, detrend = de) +
stat_qq_line(distribution = di, detrend = de) +
stat_qq_point(distribution = di, detrend = de) +
labs(x = "Theoretical Quantiles", y = "Sample Quantiles")
gg
# Normal Q-Q plot of Normal data with boostrap confidence bands
bt <- "boot"
gg <- ggplot(data = smp, mapping = aes(sample = norm)) +
stat_qq_band(bandType = bt) +
stat_qq_line() +
stat_qq_point() +
labs(x = "Theoretical Quantiles", y = "Sample Quantiles")
gg
# Normal Q-Q plot of Normal data with tail-sensitive confidence bands
bt <- "ts"
gg <- ggplot(data = smp, mapping = aes(sample = norm)) +
stat_qq_band(bandType = bt) +
stat_qq_line() +
stat_qq_point() +
labs(x = "Theoretical Quantiles", y = "Sample Quantiles")
gg
# }
Run the code above in your browser using DataLab