Plot of a matrix.
matrix_plot(x, ylim = rev(c(0.5, nrow(x) + 0.5)),
xlab = "Column", ylab = "Row",
scales = list(alternating = c(1,1), tck = c(1,0),
x = list(at = pretty(1:ncol(x)), rot = 90),
y = list(at = pretty(1:nrow(x)))),
at = NULL, colorkey = NULL, col = c("royalblue3", "white", "maroon3"),
col.regions = NULL, ...)
matrix
-like object.
y-axis limits in reverse order (for the rows to appear 'top down').
x-axis label.
y-axis label.
vector
of length two (if all values of
x
are non-positive or all are non-negative; note that also a
vector of length three is allowed in this case) or three (if
x
contains negative and positive values) providing the color
key's default colors.
additional arguments passed to the underlying
levelplot()
.
The plot, a Trellis object.
Plot of a matrix.
# NOT RUN {
## Generate a random correlation matrix
d <- 50
L <- diag(1:d)
set.seed(271)
L[lower.tri(L)] <- runif(choose(d,2)) # random Cholesky factor
Sigma <- L
# }
# NOT RUN {
<!-- %*% t(L) -->
# }
# NOT RUN {
P <- cor(Sigma)
## Default
matrix_plot(P)
matrix_plot(abs(P)) # if nonnegative
L. <- L
diag(L.) <- NA
matrix_plot(L.) # Cholesky factor without diagonal
## Default if nonpositive
matrix_plot(-abs(P))
## Extending the color key to [-1,1] with darker color for |rho| >> 0
## Note: When specifying 'at', one most likely also wants 'col.regions'
matrix_plot(P, at = seq(-1, 1, length.out = 200),
col.regions = grey(c(seq(0, 1, length.out = 100), seq(1, 0,
length.out = 100))))
## An example with overlaid lines
library(lattice)
my_panel <- function(...) {
panel.levelplot(...)
panel.abline(h = c(10, 20), v = c(10, 20), lty = 2)
}
matrix_plot(P, panel = my_panel)
# }
Run the code above in your browser using DataLab