dGEV() computes the density, pGEV() the distribution
function, qGEV() the quantile function and rGEV() random
variates of the generalized extreme value distribution.
Arguments
x, q
vector of quantiles.
p
vector of probabilities.
n
number of observations.
shape
GEV shape parameter \(\xi\), a real.
loc
GEV location parameter \(\mu\), a real.
scale
GEV scale parameter \(\sigma\), a positive real.
lower.tail
logical; if TRUE (default)
probabilities are \(P(X \le x)\) otherwise, \(P(X > x)\).
log, log.p
logical; if TRUE, probabilities p are
given as log(p).
Author
Marius Hofert
Details
The distribution function of the generalized extreme value
distribution is given by
$$F(x) = \cases{
\exp(-(1-\xi(x-\mu)/\sigma)^{-1/\xi}),&if $\xi\neq 0,\ 1+\xi(x-\mu)/\sigma>0$,\cr
\exp(-e^{-(x-\mu)/\sigma}),&if $\xi = 0$,\cr}$$
where \(\sigma>0\).
References
McNeil, A. J., Frey, R., and Embrechts, P. (2015).
Quantitative Risk Management: Concepts, Techniques, Tools.
Princeton University Press.