Density, distribution function, quantile function and random variate generation for the (generalized) Pareto distribution (GPD).
dGPD(x, shape, scale, log = FALSE)
pGPD(q, shape, scale, lower.tail = TRUE, log.p = FALSE)
qGPD(p, shape, scale, lower.tail = TRUE, log.p = FALSE)
rGPD(n, shape, scale)dPar(x, shape, scale = 1, log = FALSE)
pPar(q, shape, scale = 1, lower.tail = TRUE, log.p = FALSE)
qPar(p, shape, scale = 1, lower.tail = TRUE, log.p = FALSE)
rPar(n, shape, scale = 1)
dGPD()
computes the density, pGPD()
the distribution
function, qGPD()
the quantile function and rGPD()
random
variates of the generalized Pareto distribution.
Similary for dPar()
, pPar()
, qPar()
and
rPar()
for the Pareto distribution.
vector of quantiles.
vector of probabilities.
number of observations.
GPD shape parameter \(\xi\) (a real number) and Pareto shape parameter \(\theta\) (a positive number).
GPD scale parameter \(\beta\) (a positive number) and Pareto scale parameter \(\kappa\) (a positive number).
logical
; if TRUE
(default)
probabilities are \(P(X \le x)\) otherwise, \(P(X > x)\).
logical; if TRUE
, probabilities p
are
given as log(p)
.
Marius Hofert
The distribution function of the generalized Pareto distribution is given by $$F(x) = \left\{ \begin{array}{ll} 1-(1+\xi x/\beta)^{-1/\xi}, & \xi \neq 0,\\ 1-\exp(-x/\beta), & \xi = 0, \end{array}\right.$$ where \(\beta>0\) and \(x\ge0\) if \(\xi\ge 0\) and \(x\in[0,-\beta/\xi]\) if \(\xi<0\).
The distribution function of the Pareto distribution is given by $$F(x) = 1-(1+x/\kappa)^{-\theta},\ x\ge 0,$$ where \(\theta > 0\), \(\kappa > 0\).
In contrast to dGPD()
, pGPD()
, qGPD()
and
rGPD()
, the functions dPar()
, pPar()
,
qPar()
and rPar()
are vectorized in their main
argument and the parameters.
McNeil, A. J., Frey, R., and Embrechts, P. (2015). Quantitative Risk Management: Concepts, Techniques, Tools. Princeton University Press.
## Basic sanity checks
curve(dGPD(x, shape = 0.5, scale = 3), from = -1, to = 5)
plot(pGPD(rGPD(1000, shape = 0.5, scale = 3), shape = 0.5, scale = 3)) # should be U[0,1]
Run the code above in your browser using DataLab