data(fake.f2)
# impute genotype data
## Not run: fake.f2 <- sim.geno(fake.f2, step=5, n.draws=64)
########################################
# one marker plots
########################################
### plot of genotype-specific phenotype means for 1 marker
mname <- find.marker(fake.f2, 1, 37) # marker D1M437
effectplot(fake.f2, pheno.col=1, mname1=mname)
### output of the function contains the means and SEs
output <- effectplot(fake.f2, mname1=mname)
output
### plot a phenotype
# Plot of sex-specific phenotype means,
# note that "sex" must be a phenotype name here
effectplot(fake.f2, mname1="sex", geno1=c("F","M"))
# alternatively:
sex <- pull.pheno(fake.f2, "sex")
effectplot(fake.f2, mname1="Sex", mark1=sex, geno1=c("F","M"))
########################################
# two markers plots
########################################
### plot two markers
# plot of genotype-specific phenotype means for 2 markers
mname1 <- find.marker(fake.f2, 1, 37) # marker D1M437
mname2 <- find.marker(fake.f2, 13, 24) # marker D13M254
effectplot(fake.f2, mname1=mname1, mname2=mname2)
### plot two pseudomarkers
##### refer to pseudomarkers by their positions
effectplot(fake.f2, mname1="1@35", mname2="13@25")
##### alternatively, find their names via find.pseudomarker
pmnames <- find.pseudomarker(fake.f2, chr=c(1, 13), c(35, 25))
effectplot(fake.f2, mname1=pmnames[1], mname2=pmnames[2])
### Plot of sex- and genotype-specific phenotype means
mname <- find.marker(fake.f2, 13, 24) # marker D13M254
# sex and a marker
effectplot(fake.f2, mname1=mname, mname2="Sex",
mark2=sex, geno2=c("F","M"))
# Same as above, switch role of sex and the marker
# sex and marker
effectplot(fake.f2, mname1="Sex", mark1=sex,
geno1=c("F","M"), mname2=mname)
# X chromosome marker
mname <- find.marker(fake.f2, "X", 14) # marker DXM66
effectplot(fake.f2, mname1=mname)
# Two markers, including one on the X
mnames <- find.marker(fake.f2, c(13, "X"), c(24, 14))
effectplot(fake.f2, mname1=mnames[1], mname2=mnames[2])
Run the code above in your browser using DataLab