Learn R Programming

qtl (version 1.39-5)

mqmfind.marker: Fetch significant markers after permutation analysis

Description

Fetch significant makers after permutation analysis. These markers can be used as cofactors for model selection in a forward stepwise approach.

Usage

mqmfind.marker(cross, mqmscan = NULL, perm = NULL, alpha = 0.05, verbose=FALSE)

Arguments

cross
An object of class cross. See read.cross for details.
mqmscan
Results from either scanone or mqmscan
perm
a scanoneperm object
alpha
Threshold value, everything with significance < alpha is reported
verbose
Display more output on verbose=TRUE

Value

returns a matrix with at each row a significant marker (determined from the scanoneperm object) and with columns: markername, chr and pos (cM)

See Also

Examples

Run this code
# Use the multitrait dataset
data(multitrait)

# Set cofactors at each 3th marker
cof <- mqmsetcofactors(multitrait,3)

# impute missing genotypes
multitrait <- fill.geno(multitrait)

# log transform the 7th phenotype
multitrait <- transformPheno(multitrait, 7)

# Bootstrap 50 runs in batches of 10
## Not run: result <- mqmpermutation(multitrait,scanfunction=mqmscan,cofactors=cof,
#                          pheno.col=7,n.perm=50,batchsize=10)
# ## End(Not run)

# Create a permutation object
f2perm <- mqmprocesspermutation(result)

# What LOD score is considered significant ?
summary(f2perm)

# Find markers with a significant QTL effect (First run is original phenotype data)
marker <- mqmfind.marker(multitrait,result[[1]],f2perm)

# Print it to the screen
marker

Run the code above in your browser using DataLab