Learn R Programming

qtl (version 1.39-5)

mqmplot.clusteredheatmap: Plot clustered heatmap of MQM scan on multiple phenotypes

Description

Plot the results from a MQM scan on multiple phenotypes.

Usage

mqmplot.clusteredheatmap(cross, mqmresult, directed=TRUE, legend=FALSE, Colv=NA, scale="none", verbose=FALSE, breaks = c(-100,-10,-3,0,3,10,100), col = c("darkblue","blue","lightblue","yellow", "orange","red"), ...)

Arguments

cross
An object of class cross. See read.cross for details.
mqmresult
Result object from mqmscanall, the object needs to be of class mqmmulti
directed
Take direction of QTLs into account (takes more time because of QTL direction calculations
legend
If TRUE, add a legend to the plot
Colv
Cluster only the Rows, the columns (Markers) should not be clustered
scale
character indicating if the values should be centered and scaled in either the row direction or the column direction, or none. The default "none"
verbose
If TRUE, give verbose output.
breaks
Color break points for the LOD scores
col
Colors used between breaks
...
Additional arguments passed to heatmap.

See Also

Examples

Run this code
data(multitrait)

multitrait <- fill.geno(multitrait) # impute missing genotype data
result <- mqmscanall(multitrait, logtransform=TRUE)
cresults <- mqmplot.clusteredheatmap(multitrait,result)
groupclusteredheatmap(multitrait,cresults,10)

Run the code above in your browser using DataLab