mqmscan(cross, cofactors=NULL, pheno.col = 1, model=c("additive","dominance"), forceML=FALSE, cofactor.significance=0.02, em.iter=1000, window.size=25.0, step.size=5.0, logtransform = FALSE, estimate.map = FALSE, plot=FALSE, verbose=FALSE, outputmarkers=TRUE, multicore=TRUE, batchsize=10, n.clusters=1, test.normality=FALSE,off.end=0 )
cross
. See read.cross
for details.
mqmsetcofactors
on how-to manually set cofactors
for backward elimination. Or use mqmautocofactors
for automatic selection of cofactors. Only
three kind of (integer) values are allowed in the cofactor list. (0: no cofactor at this marker, 1: Use
this marker as an additive cofactor, 2: Use this marker as an sexfactor (Dominant cofactor))
est.map
function in R/qtl.
This is because no map is returned into the crossobject.
The old map remains in the cross object.
mqmtestnormal
.
MQM
- MQM description and references
mqmscan
- Main MQM single trait analysis
mqmscanall
- Parallellized traits analysis
mqmaugment
- Augmentation routine for estimating missing data
mqmautocofactors
- Set cofactors using marker density
mqmsetcofactors
- Set cofactors at fixed locations
mqmpermutation
- Estimate significance levels
scanone
- Single QTL scanning
data(map10) # Genetic map modeled after mouse
# simulate a cross (autosomes 1-10)
qtl <- c(3,15,1,0) # QTL model: chr, pos'n, add've & dom effects
cross <- sim.cross(map10[1:10],qtl,n=100,missing.prob=0.01)
# MQM
crossaug <- mqmaugment(cross) # Augmentation
cat(crossaug$mqm$Nind,'real individuals retained in dataset',
crossaug$mqm$Naug,'individuals augmented\n')
result <- mqmscan(crossaug) # Scan
# show LOD interval of the QTL on chr 3
lodint(result,chr=3)
Run the code above in your browser using DataLab