mqmscan(cross, cofactors=NULL, pheno.col = 1,  model=c("additive","dominance"), forceML=FALSE, cofactor.significance=0.02, em.iter=1000,  window.size=25.0, step.size=5.0, logtransform = FALSE, estimate.map = FALSE, plot=FALSE, verbose=FALSE, outputmarkers=TRUE, multicore=TRUE, batchsize=10, n.clusters=1, test.normality=FALSE,off.end=0 )cross. See read.cross for details. 
  mqmsetcofactors on how-to manually set cofactors 
    for backward elimination. Or use mqmautocofactors for automatic selection of cofactors. Only 
    three kind of (integer) values are allowed in the cofactor list. (0: no cofactor at this marker, 1: Use 
    this marker as an additive cofactor, 2: Use this marker as an sexfactor (Dominant cofactor))
  est.map function in R/qtl.
    This is because no map is returned into the crossobject. 
    The old map remains in the cross object.
    mqmtestnormal.
  MQM - MQM description and references
    mqmscan - Main MQM single trait analysis
    mqmscanall - Parallellized traits analysis 
    mqmaugment - Augmentation routine for estimating missing data
    mqmautocofactors - Set cofactors using marker density
    mqmsetcofactors - Set cofactors at fixed locations
    mqmpermutation - Estimate significance levels
    scanone - Single QTL scanning
data(map10)                    # Genetic map modeled after mouse
# simulate a cross (autosomes 1-10)
qtl <- c(3,15,1,0)             # QTL model: chr, pos'n, add've & dom effects
cross <- sim.cross(map10[1:10],qtl,n=100,missing.prob=0.01)
# MQM
crossaug <- mqmaugment(cross)  # Augmentation
cat(crossaug$mqm$Nind,'real individuals retained in dataset',
    crossaug$mqm$Naug,'individuals augmented\n')
result <- mqmscan(crossaug)    # Scan
# show LOD interval of the QTL on chr 3
lodint(result,chr=3)
Run the code above in your browser using DataLab