Learn R Programming

qtl (version 1.39-5)

simulatemissingdata: Simulates missing genotype data

Description

Simulate missing genotype data by removing some genotype data from the cross object

Usage

simulatemissingdata(cross, percentage = 5)

Arguments

cross
An object of class cross. See read.cross for details.
percentage
How much of the genotype data do we need to randomly drop?

Value

  • An object of class cross with percentage

See Also

    % \input{"inst/docs/Sources/MQM/mqm/standard_seealso.txt"}
  • The MQM tutorial:http://www.rqtl.org/tutorials/MQM-tour.pdf
  • MQM- MQM description and references
  • mqmscan- Main MQM single trait analysis
  • mqmscanall- Parallellized traits analysis
  • mqmaugment- Augmentation routine for estimating missing data
  • mqmautocofactors- Set cofactors using marker density
  • mqmsetcofactors- Set cofactors at fixed locations
  • mqmpermutation- Estimate significance levels
  • scanone- Single QTL scanning % -----^^ inst/docs/Sources/MQM/mqm/standard_seealso.txt ^^-----

Examples

Run this code
data(multitrait)
multitrait <- fill.geno(multitrait)
multimissing5 <- simulatemissingdata(multitrait,perc=5)
perc <- (sum(nmissing(multimissing5))/sum(ntyped(multimissing5)))

Run the code above in your browser using DataLab