Learn R Programming

qtl (version 1.66)

simulatemissingdata: Simulates missing genotype data

Description

Simulate missing genotype data by removing some genotype data from the cross object

Usage

simulatemissingdata(cross, percentage = 5)

Value

An object of class cross with percentage

Arguments

cross

An object of class cross. See read.cross for details.

percentage

How much of the genotype data do we need to randomly drop?

Author

Danny Arends danny.arends@gmail.com

See Also

  • The MQM tutorial: https://rqtl.org/tutorials/MQM-tour.pdf

  • MQM - MQM description and references

  • mqmscan - Main MQM single trait analysis

  • mqmscanall - Parallellized traits analysis

  • mqmaugment - Augmentation routine for estimating missing data

  • mqmautocofactors - Set cofactors using marker density

  • mqmsetcofactors - Set cofactors at fixed locations

  • mqmpermutation - Estimate significance levels

  • scanone - Single QTL scanning

Examples

Run this code
data(multitrait)
multitrait <- fill.geno(multitrait)
multimissing5 <- simulatemissingdata(multitrait,perc=5)
perc <- (sum(nmissing(multimissing5))/sum(ntyped(multimissing5)))

Run the code above in your browser using DataLab