# NOT RUN {
###########################
## Dynamic Linear Quantile Regression Models ##
###########################
require(zoo)
## multiplicative median SARIMA(1,0,0)(1,0,0)_12 model fitted to UK seatbelt data
data("UKDriverDeaths", package = "datasets")
uk <- log10(UKDriverDeaths)
dfm <- dynrq(uk ~ L(uk, 1) + L(uk, 12))
dfm
dfm3 <- dynrq(uk ~ L(uk, 1) + L(uk, 12),tau = 1:3/4)
summary(dfm3)
## explicitly set start and end
dfm1 <- dynrq(uk ~ L(uk, 1) + L(uk, 12), start = c(1975, 1), end = c(1982, 12))
## remove lag 12
dfm0 <- update(dfm1, . ~ . - L(uk, 12))
tuk1 <- anova(dfm0, dfm1)
## add seasonal term
dfm1 <- dynrq(uk ~ 1, start = c(1975, 1), end = c(1982, 12))
dfm2 <- dynrq(uk ~ season(uk), start = c(1975, 1), end = c(1982, 12))
tuk2 <- anova(dfm1, dfm2)
## regression on multiple lags in a single L() call
dfm3 <- dynrq(uk ~ L(uk, c(1, 11, 12)), start = c(1975, 1), end = c(1982, 12))
anova(dfm1, dfm3)
###############################
## Time Series Decomposition ##
###############################
## airline data
data("AirPassengers", package = "datasets")
ap <- log(AirPassengers)
fm <- dynrq(ap ~ trend(ap) + season(ap), tau = 1:4/5)
sfm <- summary(fm)
plot(sfm)
## Alternative time trend specifications:
## time(ap) 1949 + (0, 1, ..., 143)/12
## trend(ap) (1, 2, ..., 144)/12
## trend(ap, scale = FALSE) (1, 2, ..., 144)
###############################
## An Edgeworth (1886) Problem##
###############################
# DGP
fye <- function(n, m = 20){
a <- rep(0,n)
s <- sample(0:9, m, replace = TRUE)
a[1] <- sum(s)
for(i in 2:n){
s[sample(1:20,1)] <- sample(0:9,1)
a[i] <- sum(s)
}
zoo::zoo(a)
}
x <- fye(1000)
f <- dynrq(x ~ L(x,1))
plot(x,cex = .5, col = "red")
lines(fitted(f), col = "blue")
# }
Run the code above in your browser using DataLab