prices <- DAX$price_close
returns <- diff(log(prices))
n <- length(returns)
nout <- 250 # number of obs. for out-of-sample forecasting
nwin <- 1000 # window size for rolling forecasts
### Example 1 - plain historical simulation
results1 <- rollcast(x = returns, p = 0.975, method = 'plain', nout = nout,
nwin = nwin)
matplot(1:nout, cbind(-results1$xout, results1$VaR, results1$ES),
type = 'hll',
xlab = 'number of out-of-sample obs.', ylab = 'losses, VaR and ES',
main = 'Plain HS - 97.5% VaR and ES for the DAX30 return series')
### Example 2 - age weighted historical simulation
results2 <- rollcast(x = returns, p = 0.975, method = 'age', nout = nout,
nwin = nwin)
matplot(1:nout, cbind(-results2$xout, results2$VaR, results2$ES),
type = 'hll',
xlab = 'number of out-of-sample obs.', ylab = 'losses, VaR and ES',
main = 'Age weighted HS - 97.5% VaR and ES for the DAX30 return series')
### Example 3 - volatility weighted historical simulation - EWMA
results3 <- rollcast(x = returns, p = 0.975, model = 'EWMA',
method = 'vwhs', nout = nout, nwin = nwin)
matplot(1:nout, cbind(-results3$xout, results3$VaR, results3$ES),
type = 'hll',
xlab = 'number of out-of-sample obs.', ylab = 'losses, VaR and ES',
main = 'Vol. weighted HS (EWMA) - 97.5% VaR and ES for the DAX30 return
series')
# \donttest{
### Example 4 - volatility weighted historical simulation - GARCH
results4 <- rollcast(x = returns, p = 0.975, model = 'GARCH',
method = 'vwhs', nout = nout, nwin = nwin)
matplot(1:nout, cbind(-results4$xout, results4$VaR, results4$ES),
type = 'hll',
xlab = 'number of out-of-sample obs.', ylab = 'losses, VaR and ES',
main = 'Vol. weighted HS (GARCH) - 97.5% VaR and ES for the DAX30 return
series')
# }
### Example 5 - filtered historical simulation - EWMA
results5 <- rollcast(x = returns, p = 0.975, model = 'EWMA',
method = 'fhs', nout = nout, nwin = nwin, nboot = 10000)
matplot(1:nout, cbind(-results5$xout, results5$VaR, results5$ES),
type = 'hll',
xlab = 'number of out-of-sample obs.', ylab = 'losses, VaR and ES',
main = 'Filtered HS (EWMA) - 97.5% VaR and ES for the DAX30 return
series')
# \donttest{
### Example 6 - filtered historical simulation - GARCH
results6 <- rollcast(x = returns, p = 0.975, model = 'GARCH',
method = 'fhs', nout = nout, nwin = nwin, nboot = 10000)
matplot(1:nout, cbind(-results6$xout, results6$VaR, results6$ES),
type = 'hll',
xlab = 'number of out-of-sample obs.', ylab = 'losses, VaR and ES',
main = 'Filtered HS (GARCH) - 97.5% VaR and ES for the DAX30 return
series')
# }
Run the code above in your browser using DataLab