# data
dat <- psych::bfi[1:250, 2:5] # the first item is reverse coded
# delta method CI
composite(data = dat, vrb.nm = names(dat), ci.type = "delta")
composite(data = dat, vrb.nm = names(dat), ci.type = "delta", level = 0.99)
composite(data = dat, vrb.nm = names(dat), ci.type = "delta", std = TRUE)
composite(data = dat, vrb.nm = names(dat), ci.type = "delta", fit.measures = NULL)
composite(data = dat, vrb.nm = names(dat), ci.type = "delta",
se = "robust.sem", test = "satorra.bentler", missing = "listwise") # MLM estimator
composite(data = dat, vrb.nm = names(dat), ci.type = "delta",
se = "robust.huber.white", test = "yuan.bentler.mplus", missing = "fiml") # MLR estimator
if (FALSE) {
# bootstrapped CI
composite(data = dat, vrb.nm = names(dat), level = 0.95,
ci.type = "boot") # slightly different estimate for some reason...
composite(data = dat, vrb.nm = names(dat), level = 0.95, ci.type = "boot",
boot.ci.type = "perc", R = 250L) # probably want to use more resamples - this is just an example
}
# compare to semTools::reliability
psymet_obj <- composite(data = dat, vrb.nm = names(dat))
psymet_est <- unname(psymet_obj["est"])
lavaan_obj <- lavaan::cfa(model = make.latent(names(dat)), data = dat,
std.lv = TRUE, missing = "fiml")
semTools_obj <- semTools::reliability(lavaan_obj)
semTools_est <- semTools_obj["omega", "latent"]
all.equal(psymet_est, semTools_est)
Run the code above in your browser using DataLab