# types of models
dat <- psych::bfi[1:250, 16:20] # nueroticism items
summary_ucfa(data = dat, vrb.nm = names(dat)) # default
summary_ucfa(data = dat, vrb.nm = names(dat), estimator = "ML", # MLR
se = "robust.huber.white", test = "yuan.bentler.mplus", missing = "fiml",
fit.measures = c("chisq.scaled","df.scaled","tli.scaled","cfi.scaled",
"rmsea.scaled","srmr"))
summary_ucfa(data = dat, vrb.nm = names(dat), estimator = "ML", # MLM
se = "robust.sem", test = "satorra.bentler", missing = "listwise",
fit.measures = c("chisq.scaled","df.scaled","tli.scaled","cfi.scaled",
"rmsea.scaled","srmr"))
summary_ucfa(data = dat, vrb.nm = names(dat), ordered = TRUE, estimator = "DWLS", # WLSMV
se = "robust", test = "scaled.shifted", missing = "listwise",
fit.measures = c("chisq.scaled","df.scaled","tli.scaled","cfi.scaled",
"rmsea.scaled","wrmr"))
# types of info
dat <- psych::bfi[1:250, 16:20] # nueroticism items
w <- summary_ucfa(data = dat, vrb.nm = names(dat))
x <- summary_ucfa(data = dat, vrb.nm = names(dat), add.class = FALSE)
y <- summary_ucfa(data = dat, vrb.nm = names(dat),
std.load = FALSE, resid.type = "raw")
z <- summary_ucfa(data = dat, vrb.nm = names(dat),
std.load = FALSE, resid.type = "raw", add.class = FALSE)
lapply(w, class)
lapply(x, class)
lapply(y, class)
lapply(z, class)
Run the code above in your browser using DataLab