# Set global alpha for testing significance
setDisAlpha(alpha = 0.05)
# Prepare all data to test
# Set the seed for reproducibility
set.seed(13200323)
lognormal_data <- stats::rlnorm(n = 4000, meanlog = 1, sdlog = 1) #lognormal data
normal_data <- stats::rnorm(n = 4000, mean = 10, sd = 3) #normal data
uniform_data <- stats::runif(4000,min=0,max=10) #uniform data
poisson_data <- stats::rpois(4000, lambda = 5) #poisson data
gamma_data <- stats::rgamma(4000,shape = 5, rate = 2) #gamma data
logis_data <- stats::rlogis(4000, location = 4, scale = 2)#logistic values
weibull_data <- stats::rweibull(4000, shape = 4, scale = 2) #weibull data
cauchy_data <- stats::rcauchy(4000, location = 8, scale = 5) #cauchy data
# EXAMPLE FOR is.lognormal
# Test if the data is lognormal
is.lognormal(lognormal_data)
is.lognormal(normal_data)
is.lognormal(uniform_data)
is.lognormal(poisson_data)
is.lognormal(gamma_data)
is.lognormal(logis_data)
is.lognormal(weibull_data)
is.lognormal(cauchy_data)
is.lognormal(1:4000)
# EXAMPLE FOR is.normal
# Test if the data fits a normal distribution
is.normal(lognormal_data)
is.normal(normal_data)
is.normal(uniform_data)
is.normal(poisson_data)
is.normal(gamma_data)
is.normal(logis_data)
is.normal(weibull_data)
is.normal(cauchy_data)
is.normal(1:4000)
if (FALSE) {
# EXAMPLES for is.uniform
# Test if the data fits a uniform distribution
is.uniform(lognormal_data)
is.uniform(normal_data)
is.uniform(uniform_data)
is.uniform(poisson_data)
is.uniform(gamma_data)
is.uniform(logis_data)
is.uniform(weibull_data)
is.uniform(cauchy_data)
is.uniform(1:4000)
}
if (FALSE) {
# EXAMPLE for is.poisson
# Test if the data fits a poisson distribution
is.poisson(lognormal_data)
is.poisson(normal_data)
is.poisson(uniform_data)
is.poisson(poisson_data)
is.poisson(gamma_data)
is.poisson(logis_data)
is.poisson(weibull_data)
is.poisson(cauchy_data)
is.poisson(1:4000)
}
if (FALSE) {
# EXAMPLE for is.gamma
# Test if the data fits a gamma distribution
is.gamma(lognormal_data)
is.gamma(normal_data)
is.gamma(uniform_data)
is.gamma(poisson_data)
is.gamma(gamma_data)
is.gamma(logis_data)
is.gamma(weibull_data)
is.gamma(cauchy_data)
is.gamma(1:4000)
}
if (FALSE) {
# EXAMPLE for is.logistic
# Test if the data fits a logistic distribution
is.logistic(lognormal_data)
is.logistic(normal_data)
is.logistic(uniform_data)
is.logistic(poisson_data)
is.logistic(gamma_data)
is.logistic(logis_data)
is.logistic(weibull_data)
is.logistic(cauchy_data)
is.logistic(1:4000)
}
if (FALSE) {
# Test if the data fits a weibull distribution
is.weibull(lognormal_data)
is.weibull(normal_data)
is.weibull(uniform_data)
is.weibull(poisson_data)
is.weibull(gamma_data)
is.weibull(logis_data)
is.weibull(weibull_data)
is.weibull(cauchy_data)
is.weibull(1:4000)
}
if (FALSE) {
# EXAMPLES for is.cauchy
# Test if the data fits a cauchy distribution
is.cauchy(lognormal_data)
is.cauchy(normal_data)
is.cauchy(uniform_data)
is.cauchy(poisson_data)
is.cauchy(gamma_data)
is.cauchy(logis_data)
is.cauchy(weibull_data)
is.cauchy(cauchy_data)
is.cauchy(1:4000)
}
if (FALSE) {
# set global distribution alpha
# default setting
setDisAlpha()
# set to 0.001
setDisAlpha(alpha = 0.01)
}
if (FALSE) {
# unset global distribution alpha
unsetDisAlpha()
}
Run the code above in your browser using DataLab