# NOT RUN {
# A list-of-lists for the summaries arg. This object is of the basic form:
# It is recommended that you use the .data pronoun in the functions, see
# help(topic = ".data", package = "rlang") for details on this pronoun.
# list("row group A" =
# list("row 1A" = ~ <summary function>,
# "row 2A" = ~ <summary function>),
# "row group B" =
# list("row 1B" = ~ <summary function>,
# "row 2B" = ~ <summary function>,
# "row 3B" = ~ <summary function>))
our_summaries <-
list("Miles Per Gallon" =
list("min" = ~ min(mpg),
"mean" = ~ mean(mpg),
"mean ± sd" = ~ qwraps2::mean_sd(mpg),
"max" = ~ max(mpg)),
"Weight" =
list("median" = ~ median(wt)),
"Cylinders" =
list("4 cyl: n (%)" = ~ qwraps2::n_perc0(cyl == 4),
"6 cyl: n (%)" = ~ qwraps2::n_perc0(cyl == 6),
"8 cyl: n (%)" = ~ qwraps2::n_perc0(cyl == 8)))
# Going to use markdown for the markup language in this example, the original
# option will be reset at the end of the example.
orig_opt <- options()$qwraps2_markup
options(qwraps2_markup = "markdown")
# The summary table for the whole mtcars data set
# whole_table <- summary_table_042(mtcars, our_summaries)
whole_table <- summary_table(mtcars, our_summaries)
whole_table
# The summary table for mtcars grouped by am (automatic or manual transmission)
# This will generate one column for each level of mtcars$am
grouped_by_table <-
summary_table(mtcars, our_summaries, by = "am")
grouped_by_table
# an equivalent call if you are using the tidyverse:
summary_table(dplyr::group_by(mtcars, am), our_summaries)
# To build a table with a column for the whole data set and each of the am
# levels
cbind(whole_table, grouped_by_table)
# Adding a caption for a LaTeX table
print(whole_table, caption = "Hello world", markup = "latex")
# A **warning** about grouped_df objects.
# If you use dplyr::group_by or
# dplyr::rowwise to manipulate a data set and fail to use dplyr::ungroup you
# might find a table that takes a long time to create and does not summarize the
# data as expected. For example, let's build a data set with twenty subjects
# and injury severity scores for head and face injuries. We'll clean the data
# by finding the max ISS score for each subject and then reporting summary
# statistics there of.
set.seed(42)
dat <- data.frame(id = letters[1:20],
head_iss = sample(1:6, 20, replace = TRUE, prob = 10 * (6:1)),
face_iss = sample(1:6, 20, replace = TRUE, prob = 10 * (6:1)))
dat <- dplyr::group_by(dat, id)
dat <- dplyr::mutate(dat, iss = max(head_iss, face_iss))
iss_summary <-
list("Head ISS" =
list("min" = ~ min(head_iss),
"median" = ~ median(head_iss),
"max" = ~ max(head_iss)),
"Face ISS" =
list("min" = ~ min(face_iss),
"median" = ~ median(face_iss),
"max" = ~ max(face_iss)),
"Max ISS" =
list("min" = ~ min(iss),
"median" = ~ median(iss),
"max" = ~ max(iss)))
# Want: a table with one column for all subjects with nine rows divided up into
# three row groups. However, the following call will create a table with 20
# columns, one for each subject because dat is a grouped_df
summary_table(dat, iss_summary)
# Ungroup the data.frame to get the correct output
summary_table(dplyr::ungroup(dat), iss_summary)
################################################################################
# The Default call will work with non-syntactically valid names and will
# generate a table with statistics defined by the qsummary call.
summary_table(mtcars, by = "cyl")
# Another example from the diamonds data
data("diamonds", package = "ggplot2")
diamonds["The Price"] <- diamonds$price
diamonds["A Logical"] <- sample(c(TRUE, FALSE), size = nrow(diamonds), replace = TRUE)
# the next two lines are equivalent.
summary_table(diamonds)
summary_table(diamonds, qsummary(diamonds))
summary_table(diamonds, by = "cut")
summary_table(diamonds,
summaries =
list("My Summary of Price" =
list("min price" = ~ min(price),
"IQR" = ~ stats::IQR(price))),
by = "cut")
################################################################################
# Data sets with missing values
temp <- mtcars
temp$cyl[5] <- NA
temp$am[c(1, 5, 10)] <- NA
temp$am <- factor(temp$am, levels = 0:1, labels = c("Automatic", "Manual"))
temp$vs <- as.logical(temp$vs)
temp$vs[c(2, 6)] <- NA
qsummary(dplyr::select(temp, cyl, am, vs))
summary_table(dplyr::select(temp, cyl, am, vs))
################################################################################
# binding tables together. The original design and expected use of
# summary_table did not require a rbind, as all rows are defined in the
# summaries argument. That said, here are examples of using cbind and rbind to
# build several different tables.
our_summary1 <-
list("Miles Per Gallon" =
list("min" = ~ min(mpg),
"max" = ~ max(mpg),
"mean (sd)" = ~ qwraps2::mean_sd(mpg)),
"Displacement" =
list("min" = ~ min(disp),
"max" = ~ max(disp),
"mean (sd)" = ~ qwraps2::mean_sd(disp)))
our_summary2 <-
list(
"Weight (1000 lbs)" =
list("min" = ~ min(wt),
"max" = ~ max(wt),
"mean (sd)" = ~ qwraps2::mean_sd(wt)),
"Forward Gears" =
list("Three" = ~ qwraps2::n_perc0(gear == 3),
"Four" = ~ qwraps2::n_perc0(gear == 4),
"Five" = ~ qwraps2::n_perc0(gear == 5))
)
tab1 <- summary_table(mtcars, our_summary1)
tab2 <- summary_table(dplyr::group_by(mtcars, am), our_summary1)
tab3 <- summary_table(dplyr::group_by(mtcars, vs), our_summary1)
tab4 <- summary_table(mtcars, our_summary2)
tab5 <- summary_table(dplyr::group_by(mtcars, am), our_summary2)
tab6 <- summary_table(dplyr::group_by(mtcars, vs), our_summary2)
cbind(tab1, tab2, tab3)
cbind(tab4, tab5, tab6)
# row bind is possible, but it is recommended to extend the summary instead.
rbind(tab1, tab4)
summary_table(mtcars, summaries = c(our_summary1, our_summary2))
# }
# NOT RUN {
cbind(tab1, tab4) # error because rows are not the same
rbind(tab1, tab2) # error because columns are not the same
# }
# NOT RUN {
################################################################################
# reset the original markup option that was used before this example was
# evaluated.
options(qwraps2_markup = orig_opt)
# Detailed examples in the vignette
# vignette("summary-statistics", package = "qwraps2")
# }
Run the code above in your browser using DataLab