# NOT RUN {
library("rCBA")
data("iris")
train <- sapply(iris,as.factor)
train <- data.frame(train, check.names=FALSE)
txns <- as(train,"transactions")
rules = rCBA::fpgrowth(txns, support=0.03, confidence=0.03, maxLength=2, consequent="Species",
parallel=FALSE)
predictions <- rCBA::classification(train,rules)
table(predictions)
sum(as.character(train$Species)==as.character(predictions),na.rm=TRUE)/length(predictions)
prunedRules <- rCBA::pruning(train, rules, method="m2cba", parallel=FALSE)
predictions <- rCBA::classification(train, prunedRules)
table(predictions)
sum(as.character(train$Species)==as.character(predictions),na.rm=TRUE)/length(predictions)
# }
Run the code above in your browser using DataLab