data("hospitals", package="rDEA")
Y = hospitals[c('inpatients', 'outpatients')]
X = hospitals[c('labor', 'capital')]
W = hospitals[c('labor_price', 'capital_price')]
Z= hospitals[c('z1')]
## DEA score in input-oriented model
firms=1:20
di_naive = dea(XREF=X, YREF=Y, X=X[firms,], Y=Y[firms,], model="input", RTS="variable")
di_naive$thetaOpt
## added only for testing of the manual
library(maxLik)
## robust DEA score in input-oriented model with environmental inputs
di_env = dea.env.robust(X=X[firms,], Y=Y[firms,], Z=Z[firms,],
model="input", RTS="variable", L1, L2=100, alpha=0.05)
di_env$delta_hat_hat
## DEA score in cost-minimization model
ci_naive = dea(XREF=X, YREF=Y, X=X[firms,], Y=Y[firms,], W=W[firms,],
model="costmin", RTS="variable")
ci_naive$XOpt
ci_naive$gammaOpt
Run the code above in your browser using DataLab