Learn R Programming

rGEDI (version 0.1.11)

clipLevel2BPAIProfileGeometry: Clip GEDI Plant Area Index profile by geometry

Description

This function clips GEDI level2B derived Plant Area Index profile within a given geometry

Usage

clipLevel2BPAIProfileGeometry(level2BPAIProfile, polygon_spdf, split_by)

Arguments

level2BPAIProfile

A GEDI Level2B object (output of getLevel2BPAIProfile function). An S4 object of class "data.table".

polygon_spdf

Polygon. An object of class SpatialPolygonsDataFrame-class, which can be loaded as an ESRI shapefile using raster::shapefile() function in the raster package.

split_by

Polygon id. If defined, GEDI data will be clipped by each polygon using the attribute specified by split_by from the attribute table.

Value

Returns an S4 object of class data.table-class containing the Plant Area Index profile data.

See Also

https://lpdaac.usgs.gov/products/gedi02_bv001/

Examples

Run this code
# NOT RUN {
# Specifying the path to GEDI level2B data (zip file)
outdir = tempdir()
level2B_fp_zip <- system.file("extdata",
                  "GEDI02_B_2019108080338_O01964_T05337_02_001_01_sub.zip",
                  package="rGEDI")

# Unzipping GEDI level2A data
level2Bpath <- unzip(level2B_fp_zip,exdir = outdir)

# Reading GEDI level2B data (h5 file)
level2b<-readLevel2B(level2Bpath=level2Bpath)

# Extracting GEDI Plant Area Index profile
level2BPAIProfile<-getLevel2BPAIProfile(level2b)

# Specifying the path to shapefile
polygon_filepath <- system.file("extdata", "stands_cerrado.shp", package="rGEDI")

# Reading shapefile as SpatialPolygonsDataFrame object
library(raster)
polygon_spdf<-shapefile(polygon_filepath)

# Clipping GEDI Plant Area Index profile by geometry
level2b_clip_geometry <- clipLevel2BPAIProfileGeometry(
                                                      level2BPAIProfile,
                                                      polygon_spdf,
                                                      split_by="id")

close(level2b)
# }

Run the code above in your browser using DataLab