# NOT RUN {
# specify the path to GEDI level2B data (zip file)
outdir = tempdir()
level2B_fp_zip <- system.file("extdata",
"GEDI02_B_2019108080338_O01964_T05337_02_001_01_sub.zip",
package="rGEDI")
# Unzipping GEDI level2A data
level2Bpath <- unzip(level2B_fp_zip,exdir = outdir)
# Reading GEDI level2B data (h5 file)
level2b<-readLevel2B(level2Bpath=level2Bpath)
# Get GEDI derived Canopy Cover and Vertical Profile Metrics
level2BVPM<-getLevel2BVPM(level2b)
head(level2BVPM)
#' Define your own function
mySetOfMetrics = function(x)
{
metrics = list(
min =min(x), # Min of z
max = max(x), # Max of z
mean = mean(x), # Mean of z
sd = sd(x)# Sd of z
)
return(metrics)
}
#' Computing a serie of statistics of GEDI derived canopy cover
cover_stats<-gridStatsLevel2BVPM(level2BVPM = level2BVPM, func=mySetOfMetrics(cover), res=0.005)
plot(cover_stats)
#' Computing the max of the Total Plant Area Index only
pai_max<-gridStatsLevel2BVPM(level2BVPM = level2BVPM, func=max(pai), res=0.005)
plot(pai_max)
#' Computing the Foliage Height Diversity Index only
fhd_mean<-gridStatsLevel2BVPM(level2BVPM = level2BVPM, func=mean(fhd_normal), res=0.005)
plot(fhd_mean)
close(level2b)
# }
Run the code above in your browser using DataLab