Learn R Programming

rMisbeta (version 1.0)

CalcMeanVar: This function estimates the robust mean and variance using beta-divergence method.

Description

The CalcMeanVar() function estimates the robust mean and variance using beta-divergence method for RobMeanVar () function. The beta-weight function confirms that is the data contain outliers or not.The larger weights indicate the good data points and the smaller weights (near to zero) indicates the outlying data points.

Usage

CalcMeanVar(xx,Mo)

Arguments

xx

xx denotes a vector of data matrix.

Mo

Mo denotes median of xx.

Value

This function returns a data frame containing 3 components

MM

Robust mean vector produced by beta-divergence method.

VV

Robust variance produced by beta-divergence method.

WW

Weights of the each data points produced by beta-divergence method using weight function.

References

Shahjaman M, Mollah MHM, Rahman MR, Islam SSM and Mollah NHM. Robust identification of differentially expressed genes from RNA-seq data. Genomics 2020; 112(2): 2000:2010.

Examples

Run this code
# NOT RUN {
nG=1000
n1=n2=5
Simdat=Sim2Group(nG,n1,n2,var0=0.1,pde=0.1) 
xx=Simdat$outmat
Datao=xx
cl=rep(c(1,2),each=n1)
MisOutdat<-OutMisDat(xx,pctOut=0.1,pctMis=0.1)
res=remat(MisOutdat,cl)
up_mat<-res$remat

# }

Run the code above in your browser using DataLab