Learn R Programming

rainbow (version 3.8)

ElNino_ERSST_region_1and2: Sea surface temperature data set from January 1950 to December 2018

Description

Sea surface temperature data set from January 1950 to December 2018 observed by the extended reconstructed sea surface temperature

Usage

data(ElNino_ERSST_region_1and2)
data(ElNino_ERSST_region_3)
data(ElNino_ERSST_region_4)
data(ElNino_ERSST_region_3and4)

Arguments

Format

An object of class sfts.

Details

These averaged monthly sea surface temperatures are measured by the different moored buoys in the "Nino region" defined by the coordinates 0-10 degree South and 90-80 degree West.

References

A. Antoniadis and T. Sapatinas (2003) "Wavelet methods for continuous-time prediction using Hilbert-valued autoregressive processes", Journal of Multivariate Analysis, 87(1), 133-158.

P. C. Besse, H. Cardot and D. B. Stephenson (2000) "Autoregressive forecasting of some functional climatic variations", Scandinavian Journal of Statistics, 27(4), 673-687.

F. Ferraty, A. Rabhi and P. Vieu (2005) "Conditional quantiles for dependent functional data with application to the climate EL Nino Phenomenon", Sankhya: The Indian Journal of Statistics, 67(2), 378-398.

F. Ferraty and P. Vieu (2007) Nonparametric functional data analysis, New York: Springer.

R. J. Hyndman and H. L. Shang (2010) "Rainbow plots, bagplots, and boxplots for functional data", Journal of Computational and Graphical Statistics, 19(1), 29-45.

E. Moran, R. Adams, B. Bakoyema, S. Fiorini and B. Boucek (2006) "Human strategies for coping with El Nino related drought in Amazonia", Climatic Change, 77(3-4), 343-361.

A. Timmermann, J. Oberhuber, A. Bacher, M. Esch, M. Latif and E. Roeckner (1999) "Increased El Nino frequency in a climate model forced by future greenhouse warming", Nature, 398(6729), 694-697.

Examples

Run this code
data(ElNino_ERSST_region_1and2)
data(ElNino_ERSST_region_3)
data(ElNino_ERSST_region_4)
data(ElNino_ERSST_region_3and4)

Run the code above in your browser using DataLab