Learn R Programming

randnet (version 0.7)

NSBM.Gen: Generates networks from nomination stochastic block model

Description

Generates networks from nomination stochastic block model for community structure in edge nomination procedures, proposed in Li et. al. (2020)

Usage

NSBM.Gen( n, K, avg.d,beta,theta.low=0.1,
    theta.p=0.2,lambda.scale=0.2,lambda.exp=FALSE)

Value

A list of

A

the generated network adjacency matrix

g

community membership

P

probability matrix of the orignal SBM network

P.tilde

probability matrix of the observed network after nomination

B

B parameter

lambda

lambda parameter

theta

theta parameter

Arguments

n

size of network

K

number of communities

avg.d

expected average degree of the resuling network (after edge nomination)

beta

the out-in ratio of the original SBM

theta.low

the lower value of theta's. The theta's are generated as two-point mass at theta.low and 1.

theta.p

proportion of lower value of theta's

lambda.scale

standard deviation of the lambda (before the exponential, see lambda.exp)

lambda.exp

If TRUE, lambda is generated as exponential of uniformation random randomes. Otherwise, they are normally distributed.

Author

Tianxi Li, Elizaveta Levina, Ji Zhu
Maintainer: Tianxi Li tianxili@virginia.edu

References

T. Li, E. Levina, and J. Zhu. Community models for networks observed through edge nominations. arXiv preprint arXiv:2008.03652 (2020).

Examples

Run this code

dt <- NSBM.Gen(n=200,K=2,beta=0.2,avg.d=10)



Run the code above in your browser using DataLab