Learn R Programming

randomForestSRC (version 2.8.0)

plot.competing.risk: Plots for Competing Risks

Description

Plot the ensemble cumulative incidence function (CIF) and cause-specific cumulative hazard function (CSCHF) from a competing risk analysis.

Usage

# S3 method for rfsrc
plot.competing.risk(x, plots.one.page = FALSE, ...)

Arguments

x

An object of class (rfsrc, grow) or (rfsrc, predict).

plots.one.page

Should plots be placed on one page?

...

Further arguments passed to or from other methods.

Details

Ensemble ensemble CSCHF and CIF functions for each event type. Does not apply to right-censored data. Whenever possible, out-of-bag (OOB) values are displayed.

References

Ishwaran H., Gerds T.A., Kogalur U.B., Moore R.D., Gange S.J. and Lau B.M. (2014). Random survival forests for competing risks. Biostatistics, 15(4):757-773.

See Also

follic, hd, rfsrc, wihs

Examples

Run this code
# NOT RUN {
## ------------------------------------------------------------
## follicular cell lymphoma
## ------------------------------------------------------------

  data(follic, package = "randomForestSRC")
  follic.obj <- rfsrc(Surv(time, status) ~ ., follic, nsplit = 3, ntree = 100)
  plot.competing.risk(follic.obj)

## ------------------------------------------------------------
## competing risk analysis of pbc data from the survival package
## events are transplant (1) and death (2)
## ------------------------------------------------------------

if (library("survival", logical.return = TRUE)) {
   data(pbc, package = "survival")
   pbc$id <- NULL
   plot.competing.risk(rfsrc(Surv(time, status) ~ ., pbc))
}
# }

Run the code above in your browser using DataLab