# NOT RUN {
##------------------------------------------------------------
## survival analysis
##------------------------------------------------------------
## veteran data
## randomized trial of two treatment regimens for lung cancer
data(veteran, package = "randomForestSRC")
v.obj <- rfsrc(Surv(time, status) ~ ., data = veteran,
ntree = 100, block.size = 1)
## print and plot the grow object
print(v.obj)
plot(v.obj)
## plot survival curves for first 10 individuals -- direct way
matplot(v.obj$time.interest, 100 * t(v.obj$survival.oob[1:10, ]),
xlab = "Time", ylab = "Survival", type = "l", lty = 1)
## plot survival curves for first 10 individuals
## using function "plot.survival"
plot.survival(v.obj, subset = 1:10)
# }
# NOT RUN {
## fast nodesize optimization for veteran data
## optimal nodesize in survival is larger than other families
## see the function "tune" for more examples
tune.nodesize(Surv(time,status) ~ ., veteran)
## Primary biliary cirrhosis (PBC) of the liver
data(pbc, package = "randomForestSRC")
pbc.obj <- rfsrc(Surv(days, status) ~ ., pbc)
print(pbc.obj)
##------------------------------------------------------------
## example of imputation in survival analysis
##------------------------------------------------------------
data(pbc, package = "randomForestSRC")
pbc.obj2 <- rfsrc(Surv(days, status) ~ ., pbc,
nsplit = 10, na.action = "na.impute")
## same as above but we iterate the missing data algorithm
pbc.obj3 <- rfsrc(Surv(days, status) ~ ., pbc,
na.action = "na.impute", nimpute = 3)
## fast way to impute the data (no inference is done)
## see impute for more details
pbc.imp <- impute(Surv(days, status) ~ ., pbc, splitrule = "random")
##------------------------------------------------------------
## compare RF-SRC to Cox regression
## Illustrates C-index and Brier score measures of performance
## assumes "pec" and "survival" libraries are loaded
##------------------------------------------------------------
if (library("survival", logical.return = TRUE)
& library("pec", logical.return = TRUE)
& library("prodlim", logical.return = TRUE))
{
##prediction function required for pec
predictSurvProb.rfsrc <- function(object, newdata, times, ...){
ptemp <- predict(object,newdata=newdata,...)$survival
pos <- sindex(jump.times = object$time.interest, eval.times = times)
p <- cbind(1,ptemp)[, pos + 1]
if (NROW(p) != NROW(newdata) || NCOL(p) != length(times))
stop("Prediction failed")
p
}
## data, formula specifications
data(pbc, package = "randomForestSRC")
pbc.na <- na.omit(pbc) ##remove NA's
surv.f <- as.formula(Surv(days, status) ~ .)
pec.f <- as.formula(Hist(days,status) ~ 1)
## run cox/rfsrc models
## for illustration we use a small number of trees
cox.obj <- coxph(surv.f, data = pbc.na, x = TRUE)
rfsrc.obj <- rfsrc(surv.f, pbc.na, ntree = 150)
## compute bootstrap cross-validation estimate of expected Brier score
## see Mogensen, Ishwaran and Gerds (2012) Journal of Statistical Software
set.seed(17743)
prederror.pbc <- pec(list(cox.obj,rfsrc.obj), data = pbc.na, formula = pec.f,
splitMethod = "bootcv", B = 50)
print(prederror.pbc)
plot(prederror.pbc)
## compute out-of-bag C-index for cox regression and compare to rfsrc
rfsrc.obj <- rfsrc(surv.f, pbc.na)
cat("out-of-bag Cox Analysis ...", "\n")
cox.err <- sapply(1:100, function(b) {
if (b%%10 == 0) cat("cox bootstrap:", b, "\n")
train <- sample(1:nrow(pbc.na), nrow(pbc.na), replace = TRUE)
cox.obj <- tryCatch({coxph(surv.f, pbc.na[train, ])}, error=function(ex){NULL})
if (!is.null(cox.obj)) {
get.cindex(pbc.na$days[-train], pbc.na$status[-train], predict(cox.obj, pbc.na[-train, ]))
} else NA
})
cat("\n\tOOB error rates\n\n")
cat("\tRSF : ", rfsrc.obj$err.rate[rfsrc.obj$ntree], "\n")
cat("\tCox regression : ", mean(cox.err, na.rm = TRUE), "\n")
}
##------------------------------------------------------------
## competing risks
##------------------------------------------------------------
## WIHS analysis
## cumulative incidence function (CIF) for HAART and AIDS stratified by IDU
data(wihs, package = "randomForestSRC")
wihs.obj <- rfsrc(Surv(time, status) ~ ., wihs, nsplit = 3, ntree = 100)
plot.competing.risk(wihs.obj)
cif <- wihs.obj$cif.oob
Time <- wihs.obj$time.interest
idu <- wihs$idu
cif.haart <- cbind(apply(cif[,,1][idu == 0,], 2, mean),
apply(cif[,,1][idu == 1,], 2, mean))
cif.aids <- cbind(apply(cif[,,2][idu == 0,], 2, mean),
apply(cif[,,2][idu == 1,], 2, mean))
matplot(Time, cbind(cif.haart, cif.aids), type = "l",
lty = c(1,2,1,2), col = c(4, 4, 2, 2), lwd = 3,
ylab = "Cumulative Incidence")
legend("topleft",
legend = c("HAART (Non-IDU)", "HAART (IDU)", "AIDS (Non-IDU)", "AIDS (IDU)"),
lty = c(1,2,1,2), col = c(4, 4, 2, 2), lwd = 3, cex = 1.5)
## illustrates the various splitting rules
## illustrates event specific and non-event specific variable selection
if (library("survival", logical.return = TRUE)) {
## use the pbc data from the survival package
## events are transplant (1) and death (2)
data(pbc, package = "survival")
pbc$id <- NULL
## modified Gray's weighted log-rank splitting
pbc.cr <- rfsrc(Surv(time, status) ~ ., pbc)
## log-rank event-one specific splitting
pbc.log1 <- rfsrc(Surv(time, status) ~ ., pbc,
splitrule = "logrank", cause = c(1,0), importance = TRUE)
## log-rank event-two specific splitting
pbc.log2 <- rfsrc(Surv(time, status) ~ ., pbc,
splitrule = "logrank", cause = c(0,1), importance = TRUE)
## extract VIMP from the log-rank forests: event-specific
## extract minimal depth from the Gray log-rank forest: non-event specific
var.perf <- data.frame(md = max.subtree(pbc.cr)$order[, 1],
vimp1 = 100 * pbc.log1$importance[ ,1],
vimp2 = 100 * pbc.log2$importance[ ,2])
print(var.perf[order(var.perf$md), ])
}
## ------------------------------------------------------------
## regression analysis
## ------------------------------------------------------------
## new York air quality measurements
airq.obj <- rfsrc(Ozone ~ ., data = airquality, na.action = "na.impute")
# partial plot of variables (see plot.variable for more details)
plot.variable(airq.obj, partial = TRUE, smooth.lines = TRUE)
## motor trend cars
mtcars.obj <- rfsrc(mpg ~ ., data = mtcars)
## ------------------------------------------------------------
## regression with custom bootstrap
## ------------------------------------------------------------
ntree <- 25
n <- nrow(mtcars)
s.size <- n / 2
swr <- TRUE
samp <- randomForestSRC:::make.sample(ntree, n, s.size, swr)
o <- rfsrc(mpg ~ ., mtcars, bootstrap = "by.user", samp = samp)
## ------------------------------------------------------------
## classification analysis
## ------------------------------------------------------------
## iris data
iris.obj <- rfsrc(Species ~., data = iris)
## wisconsin prognostic breast cancer data
data(breast, package = "randomForestSRC")
breast.obj <- rfsrc(status ~ ., data = breast, block.size=1)
plot(breast.obj)
## ------------------------------------------------------------
## unsupervised analysis
## ------------------------------------------------------------
# two equivalent ways to implement unsupervised forests
mtcars.unspv <- rfsrc(Unsupervised() ~., data = mtcars)
mtcars2.unspv <- rfsrc(data = mtcars)
## ------------------------------------------------------------
## multivariate regression analysis
## ------------------------------------------------------------
mtcars.mreg <- rfsrc(Multivar(mpg, cyl) ~., data = mtcars,
block.size=1, importance = TRUE)
## extract error rates, vimp, and OOB predicted values for all targets
err <- get.mv.error(mtcars.mreg)
vmp <- get.mv.vimp(mtcars.mreg)
pred <- get.mv.predicted(mtcars.mreg)
## standardized error and vimp
err.std <- get.mv.error(mtcars.mreg, standardize = TRUE)
vmp.std <- get.mv.vimp(mtcars.mreg, standardize = TRUE)
## ------------------------------------------------------------
## mixed outcomes analysis
## ------------------------------------------------------------
mtcars.new <- mtcars
mtcars.new$cyl <- factor(mtcars.new$cyl)
mtcars.new$carb <- factor(mtcars.new$carb, ordered = TRUE)
mtcars.mix <- rfsrc(cbind(carb, mpg, cyl) ~., data = mtcars.new, block.size=1)
print(mtcars.mix, outcome.target = "mpg")
print(mtcars.mix, outcome.target = "cyl")
plot(mtcars.mix, outcome.target = "mpg")
plot(mtcars.mix, outcome.target = "cyl")
## ------------------------------------------------------------
## custom splitting using the pre-coded examples
## ------------------------------------------------------------
## motor trend cars
mtcars.obj <- rfsrc(mpg ~ ., data = mtcars, splitrule = "custom")
## iris analysis
iris.obj <- rfsrc(Species ~., data = iris, splitrule = "custom1")
## WIHS analysis
wihs.obj <- rfsrc(Surv(time, status) ~ ., wihs, nsplit = 3,
ntree = 100, splitrule = "custom1")
# }
Run the code above in your browser using DataLab