Learn R Programming

randomForestSRC (version 3.3.1)

plot.competing.risk.rfsrc: Plots for Competing Risks

Description

Plot useful summary curves from a random survival forest competing risk analysis.

Usage

# S3 method for rfsrc
plot.competing.risk(x, plots.one.page = FALSE, ...)

Arguments

x

An object of class (rfsrc, grow) or (rfsrc, predict).

plots.one.page

Should plots be placed on one page?

...

Further arguments passed to or from other methods.

Author

Hemant Ishwaran and Udaya B. Kogalur

Details

Given a random survival forest object from a competing risk analysis (Ishwaran et al. 2014), plots from top to bottom, left to right: (1) cause-specific cumulative hazard function (CSCHF) for each event, (2) cumulative incidence function (CIF) for each event, and (3) continuous probability curves (CPC) for each event (Pepe and Mori, 1993).

Does not apply to right-censored data. Whenever possible, out-of-bag (OOB) values are displayed.

References

Ishwaran H., Gerds T.A., Kogalur U.B., Moore R.D., Gange S.J. and Lau B.M. (2014). Random survival forests for competing risks. Biostatistics, 15(4):757-773.

Pepe, M.S. and Mori, M., (1993). Kaplan-Meier, marginal or conditional probability curves in summarizing competing risks failure time data? Statistics in Medicine, 12(8):737-751.

See Also

follic, hd, rfsrc, wihs

Examples

Run this code
# \donttest{
## ------------------------------------------------------------
## follicular cell lymphoma
## ------------------------------------------------------------

  data(follic, package = "randomForestSRC")
  follic.obj <- rfsrc(Surv(time, status) ~ ., follic, nsplit = 3, ntree = 100)
  print(follic.obj)
  plot.competing.risk(follic.obj)

## ------------------------------------------------------------
## Hodgkin's Disease
## ------------------------------------------------------------

  data(hd, package = "randomForestSRC")
  hd.obj <- rfsrc(Surv(time, status) ~ ., hd, nsplit = 3, ntree = 100)
  print(hd.obj)
  plot.competing.risk(hd.obj)

## ------------------------------------------------------------
## competing risk analysis of pbc data from the survival package
## events are transplant (1) and death (2)
## ------------------------------------------------------------

if (library("survival", logical.return = TRUE)) {
   data(pbc, package = "survival")
   pbc$id <- NULL
   plot.competing.risk(rfsrc(Surv(time, status) ~ ., pbc))
}
# }

Run the code above in your browser using DataLab