# \donttest{
## ------------------------------------------------------------
## survival/competing risk
## ------------------------------------------------------------
## survival
data(veteran, package = "randomForestSRC")
v.obj <- rfsrc(Surv(time,status)~., veteran, ntree = 100)
plot.variable(v.obj, plots.per.page = 3)
plot.variable(v.obj, plots.per.page = 2, xvar.names = c("trt", "karno", "age"))
plot.variable(v.obj, surv.type = "surv", nvar = 1, time = 200)
plot.variable(v.obj, surv.type = "surv", partial = TRUE, smooth.lines = TRUE)
plot.variable(v.obj, surv.type = "rel.freq", partial = TRUE, nvar = 2)
## example of plot.variable calling a pre-processed plot.variable object
p.v <- plot.variable(v.obj, surv.type = "surv", partial = TRUE, smooth.lines = TRUE)
plot.variable(p.v)
p.v$plots.per.page <- 1
p.v$smooth.lines <- FALSE
plot.variable(p.v)
## example using a pre-processed plot.variable to define custom plots
p.v <- plot.variable(v.obj, surv.type = "surv", partial = TRUE, show.plots = FALSE)
plotthis <- p.v$plotthis
plot(plotthis[["age"]], xlab = "age", ylab = "partial effect", type = "b")
boxplot(yhat ~ x, plotthis[["trt"]], xlab = "treatment", ylab = "partial effect")
## competing risks
data(follic, package = "randomForestSRC")
follic.obj <- rfsrc(Surv(time, status) ~ ., follic, nsplit = 3, ntree = 100)
plot.variable(follic.obj, target = 2)
## ------------------------------------------------------------
## regression
## ------------------------------------------------------------
## airquality
airq.obj <- rfsrc(Ozone ~ ., data = airquality)
plot.variable(airq.obj, partial = TRUE, smooth.lines = TRUE)
plot.variable(airq.obj, partial = TRUE, subset = airq.obj$xvar$Solar.R < 200)
## motor trend cars
mtcars.obj <- rfsrc(mpg ~ ., data = mtcars)
plot.variable(mtcars.obj, partial = TRUE, smooth.lines = TRUE)
## ------------------------------------------------------------
## classification
## ------------------------------------------------------------
## iris
iris.obj <- rfsrc(Species ~., data = iris)
plot.variable(iris.obj, partial = TRUE)
## motor trend cars: predict number of carburetors
mtcars2 <- mtcars
mtcars2$carb <- factor(mtcars2$carb,
labels = paste("carb", sort(unique(mtcars$carb))))
mtcars2.obj <- rfsrc(carb ~ ., data = mtcars2)
plot.variable(mtcars2.obj, partial = TRUE)
## ------------------------------------------------------------
## multivariate regression
## ------------------------------------------------------------
mtcars.mreg <- rfsrc(Multivar(mpg, cyl) ~., data = mtcars)
plot.variable(mtcars.mreg, m.target = "mpg", partial = TRUE, nvar = 1)
plot.variable(mtcars.mreg, m.target = "cyl", partial = TRUE, nvar = 1)
## ------------------------------------------------------------
## multivariate mixed outcomes
## ------------------------------------------------------------
mtcars2 <- mtcars
mtcars2$carb <- factor(mtcars2$carb)
mtcars2$cyl <- factor(mtcars2$cyl)
mtcars.mix <- rfsrc(Multivar(carb, mpg, cyl) ~ ., data = mtcars2)
plot.variable(mtcars.mix, m.target = "cyl", target = "4", partial = TRUE, nvar = 1)
plot.variable(mtcars.mix, m.target = "cyl", target = 2, partial = TRUE, nvar = 1)
# }
Run the code above in your browser using DataLab