# NOT RUN {
# Completely randomized design example
# with one treatment factor at two levels
w <- c(rep(0, 5), rep(1, 5))
y <- rnorm(10, mean = 0, sd = 1)
# Two-sided test
twoSidedTest <- randTest(y, w, nrand = 50, calcTestStat = diffMeans)
# One-sided test
oneSidedTest <- randTest(
y,
w,
nrand = 50,
calcTestStat = diffMeans,
alternative = "greater"
)
# Two=sided test with non-zero null hypothesis
nonZeroTest <- randTest(
y,
w,
nrand = 50,
calcTestStat = diffMeans,
calcPO = constEffect,
poOptions = list(tau = 2),
null = 2
)
# Randomized block design example
# with one treatment factor at three levels
x <- rep(1:3, 4)
w_block <- rep(1:4, 3)
y_block <- rnorm(12, mean = x, sd = 1)
blockTest <- randTest(
y_block,
w_block,
nrand = 50,
calcTestStat = anovaF,
calcOptions = list(block = x),
randOptions = list(type = "block", block = x)
)
# 4x4 Latin square example (from the Wu/Hamada reference)
row <- rep(1:4, 4)
col <- c(rep(1, 4), rep(2, 4), rep(3, 4), rep(4, 4))
w_latin <- c(
"C", "D", "B", "A", "A", "B", "D", "C",
"D", "C", "A", "B", "B", "A", "C", "D"
)
y_latin <- c(
235, 236, 218, 268, 251, 241, 227, 229,
234, 273, 274, 226, 195, 270, 230, 225
)
latinTest <- randTest(
y_latin,
w_latin,
nrand = 50,
calcTestStat = anovaF,
calcOptions = list(row = row, col = col),
randOptions = list(type = "Latin", row = row, col = col)
)
# 2^3 factorial design example
# three treatment factors (OT, CP, and ST) at two levels each
OT <- c(-1, -1, -1, -1, 1, 1, 1, 1)
CP <- c(-1, -1, 1, 1, -1, -1, 1, 1)
ST <- rep(c(-1, 1), 4)
w_fac <- cbind(OT, CP, ST)
y_fac <- c(67, 79, 61, 75, 59, 90, 52, 87)
# Testing the main effect of factor "OT"
facTest1 <- randTest(
y_fac,
w_fac,
nrand = 50,
calcTestStat = diffMeans,
calcOptions = list(factor = 1, pair = c(-1, 1))
)
# Testing all three main effects simultaneously
facTest2 <- randTest(
y_fac,
w_fac,
nrand = 50,
calcTestStat = diffMeansVector,
calcOptions = list(
factors = 1:3,
pairs = matrix(rep(c(-1, 1), 3), ncol = 2, byrow = TRUE)
)
)
# Testing all contrasts simultaneously
w_facNew <- cbind(OT, CP, ST, OT * CP, OT * ST, CP * ST, OT * CP * ST)
facTest3 <- randTest(
y_fac,
w_facNew,
nrand = 50,
calcTestStat = diffMeansVector,
calcOptions = list(
factors = 1:7,
pairs = matrix(rep(c(-1, 1), 7), ncol = 2, byrow = TRUE)
)
)
# Reading comprehension pre- and post-test example
data(reading)
# Ignoring blocks
readingTest1 <- randTest(
y = reading$Diff1,
w = reading$Group,
nrand = 50,
calcTestStat = anovaF
)
# Testing within-block pairwise effects
readingTest2 <- randTest(
y = reading$Diff1,
w = reading$Group,
nrand = 50,
calcTestStat = withinBlockEffects,
calcOptions = list(
block = reading$Block,
pairs = rbind(
c("Basal", "DRTA"),
c("Basal", "Strat"),
c("DRTA", "Strat"),
c("Basal", "DRTA"),
c("Basal", "Strat"),
c("DRTA", "Strat")
),
blockindex = c(rep(1, 3), rep(2, 3))
),
randOptions = list(type = "block", block = reading$Block)
)
# }
Run the code above in your browser using DataLab