a <- aggregate(wt~gear, mtcars, mean)
rp.lineplot(a$gear, a$wt)
rp.lineplot(gear, wt, data=a)
## lame demo:
rp.lineplot(1:length(mtcars$hp), mtcars$hp, facet=mtcars$cyl)
## advanced usage
rp.lineplot(partner, age, data = rp.desc('age', 'partner', fn = 'mean', data=ius2008)) ## TODO: fix....
rp.lineplot(partner, age, gender, data = rp.desc('age', c('gender', 'partner'), fn = 'mean', data=ius2008))
rp.lineplot(partner, age, groups = gender, data=rp.desc('age', c('gender', 'partner'), fn = 'mean', data = ius2008))
## Did you noticed the nasty axis titles? Why not correct those? :)
df <- rp.desc('age', 'partner', fn = 'mean', data = ius2008)
lapply(names(df), function(x) rp.label(df[, x]) <<- x) # nasty solution!
rp.lineplot(partner, age, data = df)
df <- rp.desc('age', c('gender', 'partner'), fn = 'mean', data = ius2008)
lapply(names(df), function(x) rp.label(df[, x]) <<- x) # nasty solution!
rp.lineplot(partner, age, gender, data = df)
df <- rp.desc('age', c('gender', 'partner'), fn = 'mean', data = ius2008)
lapply(names(df), function(x) rp.label(df[, x]) <<- x) # nasty solution!
rp.lineplot(partner, age, groups = gender, data = df)
Run the code above in your browser using DataLab