# NOT RUN {
## Use rpart to build a decision tree.
library(rpart)
## Set up the data for modelling.
set.seed(42)
ds <- weather
target <- "RainTomorrow"
risk <- "RISK_MM"
ignore <- c("Date", "Location", risk)
vars <- setdiff(names(ds), ignore)
nobs <- nrow(ds)
form <- formula(paste(target, "~ ."))
train <- sample(nobs, 0.7*nobs)
test <- setdiff(seq_len(nobs), train)
actual <- ds[test, target]
risks <- ds[test, risk]
# Build the model.
model <- rpart(form, data=ds[train, vars])
## Obtain predictions.
predicted <- predict(model, ds[test, vars], type="prob")[,2]
## Plot the Risk Chart.
riskchart(predicted, actual, risks)
# }
Run the code above in your browser using DataLab