
This function takes the provided libbi
object and
runs MCMC, adapting the proposal distribution until the desired
acceptance rate is achieved. If a scale is given, it will be used
to adapt the proposal at each iteration
adapt_proposal(
x,
min = 0,
max = 1,
scale = 2,
max_iter = 10,
adapt = c("size", "shape", "both"),
size = FALSE,
correlations = TRUE,
truncate = TRUE,
quiet = FALSE,
...
)
a libbi
with the desired proposal distribution
link{libbi}
object
minimum acceptance rate
maximum acceptance rate
scale multiplier/divider for the proposal. If >1 this will be inverted.
maximum of iterations (default: 10)
what to adapt; if "size" (default), the width of independent proposals will be adapted; if "shape", proposals will be dependent (following a multivariate normal) taking into account empirical correlations; if "both", the size will be adapted before the shape
(deprecated, use {adapt}
instead) if TRUE (default:
FALSE), the size of the (diagonal multivariate normal) proposal
distribution will be adapted
(deprecated, use {adapt}
instead) if TRUE
(default: FALSE), the shape of the (diagonal multivariate normal) proposal
distribution will be adapted according to the empirical covariance
if TRUE, the proposal distributions will be truncated according to the support of the prior distributions
if set to TRUE, will not provide running output of particle numbers tested
parameters for sample
example_obs <- rbi::bi_read(system.file(package="rbi", "example_dataset.nc"))
example_model <- rbi::bi_model(system.file(package="rbi", "PZ.bi"))
example_bi <- rbi::libbi(model = example_model, obs = example_obs)
obs_states <- rbi::var_names(example_model, type="obs")
max_time <- max(vapply(example_obs[obs_states], function(x) {
max(x[["time"]])
}, 0))
# adapt to acceptance rate between 0.1 and 0.5
if (FALSE) {
adapted <- adapt_proposal(example_bi,
nsamples = 100, end_time = max_time,
min = 0.1, max = 0.5, nparticles = 256, correlations = TRUE
)
}
Run the code above in your browser using DataLab