A simple interface to lower-level statistics functions, including
stats::wilcox.test()
, stats::kruskal.test()
, emmeans::emmeans()
,
and emmeans::emtrends()
.
stats_table(
df,
regr = NULL,
resp = attr(df, "response"),
stat.by = NULL,
split.by = NULL,
test = "emmeans",
fit = "gam",
at = NULL,
level = 0.95,
alt = "!=",
mu = 0,
p.adj = "fdr"
)
A tibble data.frame with fields from the table below. This tibble
object provides the $code
operator to print the R code used to generate
the statistics.
Field | Description |
.mean | Estimated marginal mean. See emmeans::emmeans() . |
.mean.diff | Difference in means. |
.slope | Trendline slope. See emmeans::emtrends() . |
.slope.diff | Difference in slopes. |
.h1 | Alternate hypothesis. |
.p.val | Probability that null hypothesis is correct. |
.adj.p | .p.val after adjusting for multiple comparisons. |
.effect.size | Effect size. See emmeans::eff_size() . |
.lower | Confidence interval lower bound. |
.upper | Confidence interval upper bound. |
.se | Standard error. |
.n | Number of samples. |
.df | Degrees of freedom. |
.stat | Wilcoxon or Kruskal-Wallis rank sum statistic. |
.t.ratio | .mean / .se |
.r.sqr | Percent of variation explained by the model. |
.adj.r | .r.sqr , taking degrees of freedom into account. |
.aic | Akaike Information Criterion (predictive models). |
.bic | Bayesian Information Criterion (descriptive models). |
.loglik | Log-likelihood goodness-of-fit score. |
.fit.p | P-value for observing this fit by chance. |
The dataset (data.frame or tibble object). "Dataset fields"
mentioned below should match column names in df
. Required.
Dataset field with the x-axis (independent; predictive)
values. Must be numeric. Default: NULL
Dataset field with the y-axis (dependent; response) values,
such as taxa abundance or alpha diversity.
Default: attr(df, 'response')
Dataset field with the statistical groups. Must be
categorical. Default: NULL
Dataset field(s) that the data should be split by prior to
any calculations. Must be categorical. Default: NULL
Method for computing p-values: 'wilcox'
, 'kruskal'
,
'emmeans'
, or 'emtrends'
. Default: 'emmeans'
How to fit the trendline. 'lm'
, 'log'
, or 'gam'
.
Default: 'gam'
Position(s) along the x-axis where the means or slopes should be
evaluated. Default: NULL
, which samples 100 evenly spaced positions
and selects the position where the p-value is most significant.
The confidence level for calculating a confidence interval.
Default: 0.95
Alternative hypothesis direction. Options are '!='
(two-sided; not equal to mu
), '<'
(less than mu
), or '>'
(greater than mu
). Default: '!='
Reference value to test against. Default: 0
Method to use for multiple comparisons adjustment of
p-values. Run p.adjust.methods
for a list of available
options. Default: "fdr"
Other stats_tables:
adiv_stats()
,
bdiv_stats()
,
distmat_stats()
,
taxa_stats()
library(rbiom)
biom <- rarefy(hmp50)
df <- taxa_table(biom, rank = "Family")
stats_table(df, stat.by = "Body Site")[,1:6]
df <- adiv_table(biom)
stats_table(df, stat.by = "Sex", split.by = "Body Site")[,1:7]
Run the code above in your browser using DataLab