## EXAMPLE 1
n <- 6 ; p <- 4
Xtrain <- matrix(rnorm(n * p), ncol = p)
ytrain <- rnorm(n)
Ytrain <- cbind(y1 = ytrain, y2 = 100 * ytrain)
m <- 3
Xtest <- Xtrain[1:m, , drop = FALSE]
Ytest <- Ytrain[1:m, , drop = FALSE] ; ytest <- Ytest[1:m, 1]
nlv <- 2
fm <- dkplsr(Xtrain, Ytrain, nlv = nlv, kern = "krbf", gamma = .8)
transform(fm, Xtest)
transform(fm, Xtest, nlv = 1)
coef(fm)
coef(fm, nlv = 1)
predict(fm, Xtest)
predict(fm, Xtest, nlv = 0:nlv)$pred
pred <- predict(fm, Xtest)$pred
msep(pred, Ytest)
nlv <- 2
fm <- dkplsr(Xtrain, Ytrain, nlv = nlv, kern = "kpol", degree = 2, coef0 = 10)
predict(fm, Xtest, nlv = nlv)
## EXAMPLE 2
x <- seq(-10, 10, by = .2)
x[x == 0] <- 1e-5
n <- length(x)
zy <- sin(abs(x)) / abs(x)
y <- zy + rnorm(n, 0, .2)
plot(x, y, type = "p")
lines(x, zy, lty = 2)
X <- matrix(x, ncol = 1)
nlv <- 3
fm <- dkplsr(X, y, nlv = nlv)
pred <- predict(fm, X)$pred
plot(X, y, type = "p")
lines(X, zy, lty = 2)
lines(X, pred, col = "red")
Run the code above in your browser using DataLab