## EXAMPLE OF MB-PLSDA
n <- 50 ; p <- 8
Xtrain <- matrix(rnorm(n * p), ncol = p)
Xtrainlist <- list(Xtrain[,1:3], Xtrain[,4:8])
ytrain <- sample(c(1, 4, 10), size = n, replace = TRUE)
Xtest <- Xtrain[1:5, ] ; ytest <- ytrain[1:5]
Xtestlist <- list(Xtest[,1:3], Xtest[,4:8])
nlv <- 5
fm <- mbplsrda(Xtrainlist, ytrain, Xscaling = "sd", nlv = nlv)
names(fm)
predict(fm, Xtestlist)
predict(fm, Xtestlist, nlv = 0:2)$pred
pred <- predict(fm, Xtestlist)$pred
err(pred, ytest)
zfm <- fm$fm
transform(zfm, Xtestlist)
transform(zfm, Xtestlist, nlv = 1)
summary(zfm, Xtrainlist)
coef(zfm)
coef(zfm, nlv = 0)
coef(zfm, nlv = 2)
## EXAMPLE OF MB-PLS LDA
n <- 50 ; p <- 8
Xtrain <- matrix(rnorm(n * p), ncol = p)
Xtrainlist <- list(Xtrain[,1:3], Xtrain[,4:8])
ytrain <- sample(c(1, 4, 10), size = n, replace = TRUE)
Xtest <- Xtrain[1:5, ] ; ytest <- ytrain[1:5]
Xtestlist <- list(Xtest[,1:3], Xtest[,4:8])
nlv <- 5
fm <- mbplslda(Xtrainlist, ytrain, Xscaling = "none", nlv = nlv)
predict(fm, Xtestlist)
predict(fm, Xtestlist, nlv = 1:2)$pred
zfm <- fm[[1]][[1]]
class(zfm)
names(zfm)
summary(zfm, Xtrainlist)
transform(zfm, Xtestlist)
coef(zfm)
## EXAMPLE OF MB-PLS QDA
n <- 50 ; p <- 8
Xtrain <- matrix(rnorm(n * p), ncol = p)
Xtrainlist <- list(Xtrain[,1:3], Xtrain[,4:8])
ytrain <- sample(c(1, 4, 10), size = n, replace = TRUE)
Xtest <- Xtrain[1:5, ] ; ytest <- ytrain[1:5]
Xtestlist <- list(Xtest[,1:3], Xtest[,4:8])
nlv <- 5
fm <- mbplsqda(Xtrainlist, ytrain, Xscaling = "none", nlv = nlv)
predict(fm, Xtestlist)
predict(fm, Xtestlist, nlv = 1:2)$pred
zfm <- fm[[1]][[1]]
class(zfm)
names(zfm)
summary(zfm, Xtrainlist)
transform(zfm, Xtestlist)
coef(zfm)
Run the code above in your browser using DataLab