n <- 50 ; p <- 8
Xtrain <- matrix(rnorm(n * p), ncol = p)
colnames(Xtrain) <- paste0("V",1:p)
ytrain <- sample(c(1, 4, 10), size = n, replace = TRUE)
Xtest <- Xtrain[1:5, ] ; ytest <- ytrain[1:5]
resnlvtestplsrda <- plsr_plsda_allsteps(X = Xtrain, Xname = NULL,
Xscaling = c("none","pareto","sd")[1],
Y = ytrain, Yscaling = "none", weights = NULL,
newX = Xtest, newXname = NULL,
method = c("plsr", "plsrda","plslda","plsqda")[2],
prior = c("unif", "prop")[1],
step = c("nlvtest","permutation","model","prediction")[1],
nlv = 5,
modeloutput = c("scores","loadings","coef","vip"),
cvmethod = c("kfolds","loo")[2],
nbrep = 1,
seed = 123,
samplingk = NULL,
nfolds = 10,
npermut = 5,
criterion = c("err","rmse")[1],
selection = c("localmin","globalmin","1std")[1],
outputfilename = NULL)
respermutationplsrda <- plsr_plsda_allsteps(X = Xtrain, Xname = NULL,
Xscaling = c("none","pareto","sd")[1],
Y = ytrain, Yscaling = "none", weights = NULL,
newX = Xtest, newXname = NULL,
method = c("plsr", "plsrda","plslda","plsqda")[2],
prior = c("unif", "prop")[1],
step = c("nlvtest","permutation","model","prediction")[2],
nlv = 2,
modeloutput = c("scores","loadings","coef","vip"),
cvmethod = c("kfolds","loo")[2],
nbrep = 1,
seed = 123,
samplingk = NULL,
nfolds = 10,
npermut = 5,
criterion = c("err","rmse")[1],
selection = c("localmin","globalmin","1std")[1],
outputfilename = NULL)
plotxy(respermutationplsrda, pch=16)
abline (h = respermutationplsrda[respermutationplsrda[,"permut_dyssimilarity"]==0,"res_permut"])
resmodelplsrda <- plsr_plsda_allsteps(X = Xtrain, Xname = NULL,
Xscaling = c("none","pareto","sd")[1],
Y = ytrain, Yscaling = "none", weights = NULL,
newX = Xtest, newXname = NULL,
method = c("plsr", "plsrda","plslda","plsqda")[2],
prior = c("unif", "prop")[1],
step = c("nlvtest","permutation","model","prediction")[3],
nlv = 2,
modeloutput = c("scores","loadings","coef","vip"),
cvmethod = c("kfolds","loo")[2],
nbrep = 1,
seed = 123,
samplingk = NULL,
nfolds = 10,
npermut = 5,
criterion = c("err","rmse")[1],
selection = c("localmin","globalmin","1std")[1],
outputfilename = NULL)
resmodelplsrda$scores
resmodelplsrda$loadings
resmodelplsrda$coef
resmodelplsrda$vip
respredictionplsrda <- plsr_plsda_allsteps(X = Xtrain, Xname = NULL,
Xscaling = c("none","pareto","sd")[1],
Y = ytrain, Yscaling = "none", weights = NULL,
newX = Xtest, newXname = NULL,
method = c("plsr", "plsrda","plslda","plsqda")[2],
prior = c("unif", "prop")[1],
step = c("nlvtest","permutation","model","prediction")[4],
nlv = 2,
modeloutput = c("scores","loadings","coef","vip"),
cvmethod = c("kfolds","loo")[2],
nbrep = 1,
seed = 123,
samplingk = NULL,
nfolds = 10,
npermut = 5,
criterion = c("err","rmse")[1],
selection = c("localmin","globalmin","1std")[1],
outputfilename = NULL)
Run the code above in your browser using DataLab