## EXAMPLE OF PLSDA
n <- 50 ; p <- 8
Xtrain <- matrix(rnorm(n * p), ncol = p)
ytrain <- sample(c(1, 4, 10), size = n, replace = TRUE)
Xtest <- Xtrain[1:5, ] ; ytest <- ytrain[1:5]
nlv <- 5
fm <- plsrda(Xtrain, ytrain, Xscaling = "sd", nlv = nlv)
names(fm)
predict(fm, Xtest)
predict(fm, Xtest, nlv = 0:2)$pred
pred <- predict(fm, Xtest)$pred
err(pred, ytest)
zfm <- fm$fm
transform(zfm, Xtest)
transform(zfm, Xtest, nlv = 1)
summary(zfm, Xtrain)
coef(zfm)
coef(zfm, nlv = 0)
coef(zfm, nlv = 2)
## EXAMPLE OF PLS LDA
n <- 50 ; p <- 8
Xtrain <- matrix(rnorm(n * p), ncol = p)
ytrain <- sample(c(1, 4, 10), size = n, replace = TRUE)
Xtest <- Xtrain[1:5, ] ; ytest <- ytrain[1:5]
nlv <- 5
fm <- plslda(Xtrain, ytrain, Xscaling = "sd", nlv = nlv)
predict(fm, Xtest)
predict(fm, Xtest, nlv = 1:2)$pred
zfm <- fm$fm[[1]]
class(zfm)
names(zfm)
summary(zfm, Xtrain)
transform(zfm, Xtest[1:2, ])
coef(zfm)
Run the code above in your browser using DataLab