N <- 10 ; p <- 12
set.seed(1)
X <- matrix(rnorm(N * p, mean = 10), ncol = p, byrow = TRUE)
y <- matrix(sample(c("1", "4", "10"), size = N, replace = TRUE), ncol=1)
colnames(X) <- paste("x", 1:ncol(X), sep = "")
set.seed(NULL)
n <- nrow(X)
X_list <- list(X[,1:4], X[,5:7], X[,9:ncol(X)])
X_list_2 <- list(X[1:2,1:4], X[1:2,5:7], X[1:2,9:ncol(X)])
# EXEMPLE WITH SO-PLS-RDA
soplsrdacv(X_list, y, Xscaling = c("none", "pareto", "sd")[1],
Yscaling = c("none", "pareto", "sd")[1], weights = NULL,
nlvlist=list(0:1, 1:2, 0:1), nbrep=1, cvmethod="loo", seed = 123,
samplingk = NULL, nfolds = 3, optimisation = "global",
criterion = c("err","rmse")[1], selection = "localmin")
ncomp <- 2
fm <- soplsrda(X_list, y, nlv = ncomp)
predict(fm,X_list_2)
transform(fm,X_list_2)
ncomp <- c(2, 0, 3)
fm <- soplsrda(X_list, y, nlv = ncomp)
predict(fm,X_list_2)
transform(fm,X_list_2)
ncomp <- 0
fm <- soplsrda(X_list, y, nlv = ncomp)
predict(fm,X_list_2)
transform(fm,X_list_2)
# EXEMPLE WITH SO-PLS-LDA
ncomp <- 2
weights <- rep(1 / n, n)
#w <- 1:n
soplslda(X_list, y, Xscaling = "none", nlv = ncomp, weights = weights)
soplslda(X_list, y, Xscaling = "pareto", nlv = ncomp, weights = weights)
soplslda(X_list, y, Xscaling = "sd", nlv = ncomp, weights = weights)
fm <- soplslda(X_list, y, Xscaling = c("none","pareto","sd"), nlv = ncomp, weights = weights)
predict(fm,X_list_2)
transform(fm,X_list_2)
Run the code above in your browser using DataLab