## EXAMPLE 1 (SVMR)
n <- 50 ; p <- 4
Xtrain <- matrix(rnorm(n * p), ncol = p)
ytrain <- rnorm(n)
m <- 3
Xtest <- Xtrain[1:m, , drop = FALSE]
ytest <- ytrain[1:m]
fm <- svmr(Xtrain, ytrain)
predict(fm, Xtest)
pred <- predict(fm, Xtest)$pred
msep(pred, ytest)
summary(fm)
## EXAMPLE 2
x <- seq(-10, 10, by = .2)
x[x == 0] <- 1e-5
n <- length(x)
zy <- sin(abs(x)) / abs(x)
y <- zy + rnorm(n, 0, .2)
plot(x, y, type = "p")
lines(x, zy, lty = 2)
X <- matrix(x, ncol = 1)
fm <- svmr(X, y, gamma = .5)
pred <- predict(fm, X)$pred
plot(X, y, type = "p")
lines(X, zy, lty = 2)
lines(X, pred, col = "red")
## EXAMPLE 3 (SVMC)
n <- 50 ; p <- 8
Xtrain <- matrix(rnorm(n * p), ncol = p)
ytrain <- sample(c("a", "10", "d"), size = n, replace = TRUE)
m <- 5
Xtest <- Xtrain[1:m, ] ; ytest <- ytrain[1:m]
cost <- 100 ; epsilon <- .1 ; gamma <- 1
fm <- svmda(Xtrain, ytrain,
cost = cost, epsilon = epsilon, gamma = gamma)
predict(fm, Xtest)
pred <- predict(fm, Xtest)$pred
err(pred, ytest)
summary(fm)
Run the code above in your browser using DataLab