# NOT RUN {
### Plot of linear model fit with lm
data(BrendonSmall)
model = lm(Weight ~ Calories, data = BrendonSmall)
plotPredy(data = BrendonSmall,
y = Weight,
x = Calories,
model = model,
xlab = "Calories per day",
ylab = "Weight in kilograms")
### Plot of polynomial model fit with lm
data(BrendonSmall)
BrendonSmall$Calories2 = BrendonSmall$Calories * BrendonSmall$Calories
model = lm(Sodium ~ Calories + Calories2, data = BrendonSmall)
plotPredy(data = BrendonSmall,
y = Sodium,
x = Calories,
x2 = Calories2,
model = model,
order = 2,
xlab = "Calories per day",
ylab = "Sodium intake per day")
### Plot of quadratic plateau model fit with nls
data(BrendonSmall)
quadplat = function(x, a, b, clx) {
ifelse(x < clx, a + b * x + (-0.5*b/clx) * x * x,
a + b * clx + (-0.5*b/clx) * clx * clx)}
model = nls(Sodium ~ quadplat(Calories, a, b, clx),
data = BrendonSmall,
start = list(a = 519,
b = 0.359,
clx = 2304))
plotPredy(data = BrendonSmall,
y = Sodium,
x = Calories,
model = model,
xlab = "Calories per day",
ylab = "Sodium intake per day")
### Logistic regression example requires type option
data(BullyHill)
Trials = cbind(BullyHill$Pass, BullyHill$Fail)
model.log = glm(Trials ~ Grade, data = BullyHill,
family = binomial(link="logit"))
plotPredy(data = BullyHill,
y = Percent,
x = Grade,
model = model.log,
type = "response",
xlab = "Grade",
ylab = "Proportion passing")
# }
Run the code above in your browser using DataLab