Learn R Programming

rdetools (version 1.0)

kpr: Kernel projection regression

Description

The function does a kernel projection regression. It returns a function which predicts labels for new data points.

Usage

kpr(model, X = NULL, Xname = "X", Yname = "Y", kernel = NULL, regression = TRUE, ...)

Arguments

model
list of rde data returned by rde or selectmodel
X
matrix containing the data points, only needed if rde was used
Xname
the name of the parameter of the kernel function which should contain the data points, only needed if rde was used
Yname
the name of the parameter of the kernel function which should contain the 2nd data matrix
kernel
kernel function to use, only needed if rde was used
regression
set this to TRUE in case of a regression problem and to FALSE in case of a classification problem; only needed if rde was used
...
parameters for the kernel function, only needed if rde was used

Value

function which predicts labels for new input data (gets a matrix with one data point per line)

References

M. L. Braun, J. M. Buhmann, K. R. Mueller (2008) \_On Relevant Dimensions in Kernel Feature Spaces\_

See Also

selectmodel

Examples

Run this code
## kernel projection regression after
## calling selectmodel (recommended)
d <- sincdata(100, 0.1) # generate sinc data
# do model selection
m <- selectmodel(d$X, d$y, sigma = logspace(-3, 3, 100))
f <- kpr(m)
plot(f, -4, 4)

Run the code above in your browser using DataLab