Learn R Programming

readr (version 2.1.5)

melt_delim: Return melted data for each token in a delimited file (including csv & tsv)

Description

[Superseded] This function has been superseded in readr and moved to the meltr package.

Usage

melt_delim(
  file,
  delim,
  quote = "\"",
  escape_backslash = FALSE,
  escape_double = TRUE,
  locale = default_locale(),
  na = c("", "NA"),
  quoted_na = TRUE,
  comment = "",
  trim_ws = FALSE,
  skip = 0,
  n_max = Inf,
  progress = show_progress(),
  skip_empty_rows = FALSE
)

melt_csv( file, locale = default_locale(), na = c("", "NA"), quoted_na = TRUE, quote = "\"", comment = "", trim_ws = TRUE, skip = 0, n_max = Inf, progress = show_progress(), skip_empty_rows = FALSE )

melt_csv2( file, locale = default_locale(), na = c("", "NA"), quoted_na = TRUE, quote = "\"", comment = "", trim_ws = TRUE, skip = 0, n_max = Inf, progress = show_progress(), skip_empty_rows = FALSE )

melt_tsv( file, locale = default_locale(), na = c("", "NA"), quoted_na = TRUE, quote = "\"", comment = "", trim_ws = TRUE, skip = 0, n_max = Inf, progress = show_progress(), skip_empty_rows = FALSE )

Value

A tibble() of four columns:

  • row, the row that the token comes from in the original file

  • col, the column that the token comes from in the original file

  • data_type, the data type of the token, e.g. "integer", "character", "date", guessed in a similar way to the guess_parser() function.

  • value, the token itself as a character string, unchanged from its representation in the original file.

If there are parsing problems, a warning tells you how many, and you can retrieve the details with problems().

Arguments

file

Either a path to a file, a connection, or literal data (either a single string or a raw vector).

Files ending in .gz, .bz2, .xz, or .zip will be automatically uncompressed. Files starting with http://, https://, ftp://, or ftps:// will be automatically downloaded. Remote gz files can also be automatically downloaded and decompressed.

Literal data is most useful for examples and tests. To be recognised as literal data, the input must be either wrapped with I(), be a string containing at least one new line, or be a vector containing at least one string with a new line.

Using a value of clipboard() will read from the system clipboard.

delim

Single character used to separate fields within a record.

quote

Single character used to quote strings.

escape_backslash

Does the file use backslashes to escape special characters? This is more general than escape_double as backslashes can be used to escape the delimiter character, the quote character, or to add special characters like \\n.

escape_double

Does the file escape quotes by doubling them? i.e. If this option is TRUE, the value """" represents a single quote, \".

locale

The locale controls defaults that vary from place to place. The default locale is US-centric (like R), but you can use locale() to create your own locale that controls things like the default time zone, encoding, decimal mark, big mark, and day/month names.

na

Character vector of strings to interpret as missing values. Set this option to character() to indicate no missing values.

quoted_na

[Deprecated] Should missing values inside quotes be treated as missing values (the default) or strings. This parameter is soft deprecated as of readr 2.0.0.

comment

A string used to identify comments. Any text after the comment characters will be silently ignored.

trim_ws

Should leading and trailing whitespace (ASCII spaces and tabs) be trimmed from each field before parsing it?

skip

Number of lines to skip before reading data. If comment is supplied any commented lines are ignored after skipping.

n_max

Maximum number of lines to read.

progress

Display a progress bar? By default it will only display in an interactive session and not while knitting a document. The automatic progress bar can be disabled by setting option readr.show_progress to FALSE.

skip_empty_rows

Should blank rows be ignored altogether? i.e. If this option is TRUE then blank rows will not be represented at all. If it is FALSE then they will be represented by NA values in all the columns.

Details

For certain non-rectangular data formats, it can be useful to parse the data into a melted format where each row represents a single token.

melt_csv() and melt_tsv() are special cases of the general melt_delim(). They're useful for reading the most common types of flat file data, comma separated values and tab separated values, respectively. melt_csv2() uses ; for the field separator and , for the decimal point. This is common in some European countries.

See Also

read_delim() for the conventional way to read rectangular data from delimited files.

Examples

Run this code
# Input sources -------------------------------------------------------------
# Read from a path
melt_csv(readr_example("mtcars.csv"))
melt_csv(readr_example("mtcars.csv.zip"))
melt_csv(readr_example("mtcars.csv.bz2"))
if (FALSE) {
melt_csv("https://github.com/tidyverse/readr/raw/main/inst/extdata/mtcars.csv")
}

# Or directly from a string (must contain a newline)
melt_csv("x,y\n1,2\n3,4")

# To import empty cells as 'empty' rather than `NA`
melt_csv("x,y\n,NA,\"\",''", na = "NA")

# File types ----------------------------------------------------------------
melt_csv("a,b\n1.0,2.0")
melt_csv2("a;b\n1,0;2,0")
melt_tsv("a\tb\n1.0\t2.0")
melt_delim("a|b\n1.0|2.0", delim = "|")

Run the code above in your browser using DataLab