# Attach packages
library(rearrr)
library(dplyr)
library(purrr)
has_ggplot <- require(ggplot2) # Attach if installed
# Set seed
set.seed(1)
# Create a data frame
df <- data.frame(
"y" = runif(200),
"g" = factor(rep(1:5, each = 40))
)
# Hexagonalize 'y'
df_hex <- hexagonalize(df, y_col = "y")
df_hex
# Plot hexagon
if (has_ggplot){
df_hex %>%
ggplot(aes(x = .hexagon_x, y = y, color = .edge)) +
geom_point() +
theme_minimal()
}
#
# Grouped hexagonalization
#
# Hexagonalize 'y' for each group
# First cluster the groups a bit to move the
# hexagons away from each other
df_hex <- df %>%
cluster_groups(
cols = "y",
group_cols = "g",
suffix = "",
overwrite = TRUE
) %>%
dplyr::group_by(g) %>%
hexagonalize(
y_col = "y",
overwrite = TRUE
)
# Plot hexagons
if (has_ggplot){
df_hex %>%
ggplot(aes(x = .hexagon_x, y = y, color = g)) +
geom_point() +
theme_minimal()
}
#
# Specifying minimum value
#
# Specify minimum value manually
df_hex <- hexagonalize(df, y_col = "y", .min = -2)
df_hex
# Plot hexagon
if (has_ggplot){
df_hex %>%
ggplot(aes(x = .hexagon_x, y = y, color = .edge)) +
geom_point() +
theme_minimal()
}
#
# Multiple hexagons by contraction
#
# Start by hexagonalizing 'y'
df_hex <- hexagonalize(df, y_col = "y")
# Contract '.hexagon_x' and 'y' towards the centroid
# To contract with multiple multipliers at once,
# we wrap the call in purrr::map_dfr
df_expanded <- purrr::map_dfr(
.x = c(1, 0.75, 0.5, 0.25, 0.125),
.f = function(mult) {
expand_distances(
data = df_hex,
cols = c(".hexagon_x", "y"),
multiplier = mult,
origin_fn = centroid,
overwrite = TRUE
)
}
)
df_expanded
if (has_ggplot){
df_expanded %>%
ggplot(aes(
x = .hexagon_x_expanded, y = y_expanded,
color = .edge, alpha = .multiplier
)) +
geom_point() +
theme_minimal()
}
Run the code above in your browser using DataLab