# in case of missing data...
mean2 <- function(x) mean(x, na.rm = TRUE)
# define naming convention
rec <- recipe(Species ~ ., data = iris) %>%
step_classdist(all_numeric_predictors(),
class = "Species",
pool = FALSE, mean_func = mean2, prefix = "centroid_"
)
# default naming
rec <- recipe(Species ~ ., data = iris) %>%
step_classdist(all_numeric_predictors(),
class = "Species",
pool = FALSE, mean_func = mean2
)
rec_dists <- prep(rec, training = iris)
dists_to_species <- bake(rec_dists, new_data = iris, everything())
## on log scale:
dist_cols <- grep("classdist", names(dists_to_species), value = TRUE)
dists_to_species[, c("Species", dist_cols)]
tidy(rec, number = 1)
tidy(rec_dists, number = 1)
Run the code above in your browser using DataLab